Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Photodynamic inactivation (PDI) is a process that uses photosensitizing substances to produce reactive oxygen species. This is achieved by exposing photosensitizers to specific wavelengths of light and causing oxidative damage in cells. This sterilization technique is commonly utilized and has been extensively investigated owing to its environmentally friendly and inert characteristics. In this study, erythrosine was selected as the photosensitizer and a green light-emitting diode was used as the light source. Due to their excellent biocompatibility, gold nanoparticles were added; these acted as a carrier for erythrosine, linking it to Escherichia coli (E. coli) cells. Colony-forming unit plate counting and LIVE/DEAD bacterial viability tests were performed. A synergic PDI effect of the photosensitizer, light, and gold nanoparticles was demonstrated. After irradiation for 9 min, a bacterial death rate higher than 97% was achieved. Finally, to study the mechanism of E. coli death, we conducted reactive oxygen species tests by adding different scavengers, and concluded that the bacterial death was due to the production of singlet oxygen (Type II reaction).

Details

Title
The Synergic Effect of Erythrosine and Gold Nanoparticles in Photodynamic Inactivation
Author
Shih-Chen, Shi 1   VIAFID ORCID Logo  ; Shu-Wen, Yang 1 ; Yu-Chen, Xu 1 ; Fu-I, Lu 2   VIAFID ORCID Logo 

 Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan 
 Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; The iEGG and Animal Technology Center, National Chung Hsing University, Taichung 40227, Taiwan 
First page
3621
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779695073
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.