Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The development of high-performance thermoplastic polyurethane (TPU) with high flame retardancy and low toxicity has always been the focus of its research. In this paper, the novel 3D hollow layered double hydroxide/molybdenum disulfide (LDH/MoS2) hybrid materials were synthesized by hydrothermal method using the MIL-88A as in situ sacrificial template and MoS2 as synergistic flame retardant. Among all TPU composites, the peak heat release rate, total heat release rate, and total smoke release rate of TPU/NiFeTb-LDH/MoS2 were reduced by 50.9%, 18.2%, and 35.8% compared with pure TPU, respectively. The results of the thermogravimetric infrared analysis demonstrated that the contents of combustible volatiles (hydrocarbons) and toxic volatiles (CO and HCN) emitted from TPU/LDH/MoS2 were significantly reduced, indicating that LDH/MoS2 hybrid materials can dramatically enhance the fire safety of TPU composites. Combined with the analysis of carbon residues and thermal stability of TPU composites, the enhanced flame retardancy and smoke suppression performances are primarily attributed to the catalytic carbonization of LDH and the physical barrier effect of MoS2.

Details

Title
Synthesis of 3D Hollow Layered Double Hydroxide-Molybdenum Disulfide Hybrid Materials and Their Application in Flame Retardant Thermoplastic Polyurethane
Author
Qian, Yi 1 ; Su, Wenyuan 1 ; Long, Li 2 ; Fu, Haoyan 1 ; Li, Jiayin 2 ; Zhang, Yihao 2 

 College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; [email protected] (W.S.); [email protected] (H.F.) 
 College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; [email protected] (J.L.); [email protected] (Y.Z.) 
First page
1506
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2653004917
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.