Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Furfural is a platform molecule obtained from hemicellulose. Among the products that can be produced from furfural, furfuryl alcohol is one of the most extensively studied. It is synthesized at an industrial scale in the presence of CuCr catalyst, but this process suffers from an environmental negative impact. Here, we demonstrate that a non-noble metal catalyst (Co/SiO2) was active (100% conversion of furfural) and selective (100% selectivity to furfuryl alcohol) in the hydrogenation of furfural to furfuryl alcohol at 150 °C under 20 bar of hydrogen. This catalyst was recyclable up to 3 cycles, and then the activity decreased. Thus, a comparison between batch and continuous flow reactors shows that changing the reactor type helps to increase the stability of the catalyst and the space-time yield. This study shows that using a continuous flow reactor can be a solution to the catalyst suffering from a lack of stability in the batch process.

Details

Title
Synthesis of Furfuryl Alcohol from Furfural: A Comparison between Batch and Continuous Flow Reactors
Author
Audemar, Maïté; Wang, Yantao; Zhao, Deyang; Royer, Sébastien  VIAFID ORCID Logo  ; François Jérôme; Christophe, Len; Karine De Oliveira Vigier  VIAFID ORCID Logo 
First page
1002
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2367497833
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.