Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

H2S is a common but hazardous impurity in syngas, biogas, or natural gas. For some advanced power generation technologies, such as integrated gasification combined cycle (IGCC), solid oxide fuel cells, H2S content needs to be reduced to an acceptable level. In this work, a series of highly porous Zn-Cu and Zn-Co composites with three-dimensionally ordered macropores (3DOM) structure were synthesized via the colloidal crystal template method and used to remove H2S at 150 °C and one atm. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption studies, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were carried out to analyze the fresh and spent adsorbents. The results show that all the adsorbents possess well-ordered macropores, a large surface area, and a highly dispersed active phase. The relative content of Zn and (Cu or Co) has a significant influence on the desulfurization performance of adsorbents. The addition of CuO significantly increases the sulfur capacity and 3DOM-Zn0.5Cu0.5 shows the largest sulfur capacity of all the adsorbents, reaching up to 102.5 mg/g. The multiple adsorption/regeneration cycles of 3DOM-Zn0.5Cu0.5 and 3DOM-Zn0.5Co0.5 indicate that the as-prepared adsorbents are stable, and the sulfur capacity can still exceed 65% of the fresh adsorbents after six cycles.

Details

Title
Synthesis of ZnO-CuO and ZnO-Co3O4 Materials with Three-Dimensionally Ordered Macroporous Structure and Its H2S Removal Performance at Low-Temperature
Author
Yu, Tao; Chen, Zhuo; Wang, Yundong; Xu, Jianhong
First page
1925
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2602181397
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.