Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

R2R3-MYB transcription factors participate in multiple critical biological processes, particularly as relates to the regulation of secondary metabolites. The dried root of Scutellaria baicalensis Georgi is a traditional Chinese medicine and possesses various bioactive attributes including anti-inflammation, anti-HIV, and anti-COVID-19 properties due to its flavonoids. In the current study, a total of 95 R2R3-MYB genes were identified in S. baicalensis and classified into 34 subgroups, as supported by similar exon–intron structures and conserved motifs. Among them, 93 R2R3-SbMYBs were mapped onto nine chromosomes. Collinear analysis revealed that segmental duplications were primarily responsible for driving the evolution and expansion of the R2R3-SbMYB gene family. Synteny analyses showed that the ortholog numbers of the R2R3-MYB genes between S. baicalensis and other dicotyledons had a higher proportion compared to that which is found from the monocotyledons. RNA-seq data indicated that the expression patterns of R2R3-SbMYBs in different tissues were different. Quantitative reverse transcriptase-PCR (qRT-PCR) analysis showed that 36 R2R3-SbMYBs from different subgroups exhibited specific expression profiles under various conditions, including hormone stimuli treatments (methyl jasmonate and abscisic acid) and abiotic stresses (drought and cold shock treatments). Further investigation revealed that SbMYB18/32/46/60/70/74 localized in the nucleus, and SbMYB18/32/60/70 possessed transcriptional activation activity, implying their potential roles in the regulatory mechanisms of various biological processes. This study provides a comprehensive understanding of the R2R3-SbMYBs gene family and lays the foundation for further investigation of their biological function.

Details

Title
Systematic Analysis and Functional Characterization of R2R3-MYB Genes in Scutellaria baicalensis Georgi
Author
Wang, Wentao 1 ; Hu, Suying 2 ; Zhang, Caijuan 2 ; Yang, Jing 3 ; Zhang, Tong 2 ; Wang, Donghao 2   VIAFID ORCID Logo  ; Cao, Xiaoyan 2   VIAFID ORCID Logo  ; Wang, Zhezhi 2 

 National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi’an 710062, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China 
 National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi’an 710062, China 
 National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi’an 710062, China; National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094, China 
First page
9342
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706242244
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.