Full text

Turn on search term navigation

© 2020. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

El contenido que se genera en la interacción con las redes sociales es vasto y se ha convertido en una valiosa fuente de información, que requiere ser analizada y explorada mediante la aplicación de técnicas para la clasificación o etiquetado de sentimientos, con el propósito de encontrar patrones o tendencias en el comportamiento de las personas, que apoyen a las organizaciones en el fortalecimiento de sus tareas relacionadas con marketing digital. The content generated in the interaction with social networks is vast and has become a valuable source of information, which needs to be analyzed and explored by applying techniques for the classification or labeling of sentiments, in order to find patterns or trends in people's behavior, which support organizations in strengthening their tasks related to digital marketing. The SVM (Support Vector Machines) supervised learning linear classifier is proposed for the classification or labeling of sentiments in social networks. Keywords: Social Networking; Opinion Mining; Techniques for the Classification of Sentiments; Support Vector Machines; Digital Marketing and Social Networks. 1.

Details

Title
Técnicas para la Clasificación de Sentimientos en Redes Sociales como Apoyo en el Marketing Digital
Author
Moreno, Fredy Yarney Romero 1 ; Martelo, Carlos Augusto Sanchez 2 ; Corredor, Breed Yeet Alfonso 3 ; Cifuentes, Joaquin Fernando Sanchez 2 ; López, Juan Pablo Ospina 4 

 Universidad Distrital, Bogotá Colombia 
 Universidad Manuela Beltrán, Bogotá Colombia 
 La Fundación Universitaria Internacional de La Rioja - UNIR, Bogotá Colombia 
 Universidad Manuela Beltran, Bogotá Colombia 
Pages
167-186
Publication year
2020
Publication date
Sep 2020
Publisher
Associação Ibérica de Sistemas e Tecnologias de Informacao
ISSN
16469895
Source type
Scholarly Journal
Language of publication
Spanish
ProQuest document ID
2453792431
Copyright
© 2020. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.