Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Renewable-energy-based microgrids (MGs) are being advocated around the world in response to increasing energy demand, high levels of greenhouse gas (GHG) emissions, energy losses, and the depletion of conventional energy resources. However, the high investment cost of the MGs besides the low selling price of the energy to the main grid are two main challenges to realize the MGs in developing countries such as Iran. For this reason, the government should define some incentive policies to attract investor attention to MGs. This paper aims to develop a framework for the optimal planning of a renewable energy-based MG considering the incentive policies. To investigate the effect of the incentive policies on the planning formulation, three different policies are introduced in a pilot system in Iran. The minimum penetration rates of the RESs in the MG to receive the government incentive are defined as 20% and 40% in two different scenarios. The results show that the proposed incentive policies reduce the MG’s total net present cost (NPC) and the amount of carbon dioxide (CO2) emissions. The maximum NPC and CO2 reduction in comparison with the base case (with incentive policies) are 22.87% and 56.13%, respectively. The simulations are conducted using the hybrid optimization model for electric renewables (HOMER) software.

Details

Title
Techno-Economic Analysis of Renewable-Energy-Based Micro-Grids Considering Incentive Policies
Author
Amini, Shiva 1 ; Bahramara, Salah 2   VIAFID ORCID Logo  ; Golpîra, Hêmin 1 ; Bruno, Francois 3   VIAFID ORCID Logo  ; Soares, João 4   VIAFID ORCID Logo 

 Power Systems Modeling & Simulation Lab, Department of Electrical and Computer Engineering, University of Kurdistan, Sanandaj 66177-15175, Iran 
 Department of Electrical Engineering, Sanandaj Branch, Islamic Azad University, Sanandaj 66169-35391, Iran 
 Arts et Metiers Institute of Technology, Centrale Lille, Yncrea Hauts-de-France, ULR 2697-L2EP, F59000 Lille, France 
 GECAD—Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, LASI—Intelligent Systems Associate Laboratory, Polytechnic of Porto, Rua Dr. Antonio Bernardino de Almeida, 431, 4249-015 Porto, Portugal 
First page
8285
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734627141
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.