Full Text

Turn on search term navigation

© 2021. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background: Chronic pain patients implanted with a neurostimulation device typically require follow-up and device programming visits to address changes in symptoms or treatment. Follow-up visits require access to specialty care and necessitate patients to take time off work, commute long distances, arrange for travel, and/or work with a caregiver’s schedule. Telemedicine was adopted for some patient management as a result of the Sars-Cov-2 pandemic; however, remote optimization for neuromodulation still required an in-person visit to adjust device parameters. An FDA-approved digital platform enables remote programming of an implanted neuromodulation device using a real-time audio-video link from the clinical programmer to the patient controller. The Remote Optimization, Adjustment, and Measurement for Chronic Pain Therapy (ROAM-CPT) is a multi-center, prospective study that is currently underway to access the effectiveness of the teleprogramming system in fulfilling patients’ clinical demands.

Methods: This pilot study surveyed 16 patients to determine the ability of the teleprogramming platform to provide a rapid solution safely and effectively for patient’s chronic pain. Data were collected using a questionnaire that asked 6 clinician-centric questions and 5 patient-centric questions.

Results: 4/4 surveyed physicians were able to address patients’ needs. 16/16 surveyed patients reported a quick resolution to pain and 15/16 did not require additional follow-up. Data curated from this pilot study show that the teleprogramming application greatly improves patient care, is preferred by both clinicians and patients with minimal disruptions to patients’ everyday lives.

Conclusion: Teleprogramming provides real-time virtual programming capabilities and optimizes patients’ therapy.

Perspective: This article describes remote device programming and analysis as an alternative to in-person programming/treatment sessions for neuromodulation patients. This remote option gives patients access to timely and clinically appropriate device management when in-person care may not be available.

Details

Title
Teleprogramming Service Provides Safe and Remote Stimulation Options for Patients with DRG-S and SCS Implants
Author
Deer, Timothy R; Esposito, Michael F; Cornidez, Eric G; Okaro, Udoka; Fahey, Marie E; Chapman, Kenneth B
Pages
3259-3265
Section
Original Research
Publication year
2021
Publication date
2021
Publisher
Taylor & Francis Ltd.
e-ISSN
1178-7090
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2582641850
Copyright
© 2021. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.