Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Sinapic acid (SA) is a poorly water-soluble substance which could result in poor bioavailability. The aim of this study was to determine the “hydroxypropyl β-cyclodextrin (HPβCD)” solubilization of SA in the presence of the auxiliary substance hydroxypropyl methylcellulose (HPMC) and to evaluate the ternary inclusion complex prepared by microwave technology. Phase-solubility profiles showed that HPβCD exhibited the greatest solubilizing effect on SA in the presence of HPMC. The enhanced rate of SA dissolution was exhibited by a ternary complex. Outcomes of analyses such as “DSC, FTIR, NMR, and SEM” confirmed the embedding of SA into the cavity of the HPβCD and the formation of a ternary inclusion complex. The outcomes of antioxidant activity (ABTS and nitric oxide scavenging activity) demonstrated that SA ternary inclusion complex (TIC) presented strong antioxidant activity, which might be a result of the enhanced solubility of SA in the TIC prepared by microwave technology. Hence, SA-TIC formulation could be a better dosage form which may protect the body from free radical damage and oxidative stress. Microwave technology greatly boosted the interaction of SA with HPβCD and HPMC, and such findings are expected to contribute to raising the solubility of SA, thereby improving the bioavailability of SA.

Details

Title
Ternary Inclusion Complex of Sinapic Acid with Hydroxypropyl-β-cyclodextrin and Hydrophilic Polymer Prepared by Microwave Technology
Author
Ahad, Abdul  VIAFID ORCID Logo  ; Bin Jardan, Yousef A  VIAFID ORCID Logo  ; Raish, Mohammad  VIAFID ORCID Logo  ; Al-Mohizea, Abdullah M; Al-Jenoobi, Fahad I
First page
2637
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756779383
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.