Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The manuscript presents advanced coupled analysis: Maxwell 3D, Transient Thermal and Fluent CFD, at the time of a rated current occurring on the main busbars in the low-voltage switchgear. The simulations were procured in order to aid the design process of such enclosures. The analysis presented the rated current flow in the switchgear busbars, which allowed determining their temperature values. The main assumption of the simulation was measurements of temperature rise during rated current conditions. Simulating such conditions is a valuable asset in order to design better solutions for energy distribution gear. The simulation model was a precise representation of the actual prototype of the switchgear. Simulations results were validated by experimental research. The heat dissipation in busbars and switchgear housing through air convection was presented. The temperature distribution for the insulators in the rail bridge made of fireproof material was considered: halogen-free polyester. The results obtained during the simulation allowed for a detailed analysis of switchgear design and proper conclusions in practical and theoretical aspects. That helped in introducing structural changes in the prepared prototype of the switchgear at the design and construction stages. Deep analysis of the simulation results allowed for the development concerning the final prototype of the switchgear, which could be subjected to the full type tests. Additionally, short-circuit current simulations were procured and presented.

Details

Title
Thermal Analysis of Heat Distribution in Busbars during Rated Current Flow in Low-Voltage Industrial Switchgear
Author
Łapczyński, Sebastian; Kolimas, Łukasz  VIAFID ORCID Logo 
First page
2427
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2528257568
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.