Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, the thermal decomposition behavior of 3,5-difluoro-2,4,6-trinitroanisole (DFTNAN) was studied by differential scanning calorimetry (DSC) and thermogravimetry (TG) by using different heating rates (2, 5, 10, 15 °C·min−1). Subsequently, the kinetic and thermodynamic parameters of non-isothermal thermal decomposition of DFTNAN were calculated. The critical temperature of thermal explosion (Tb) and self-accelerating decomposition temperature (TASDT) were determined to be 249.03 °C and 226.33 °C, respectively. The compatibility of DFTNAN with a number of high explosives (cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX), 1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaaza-tetracyclo-[5.5.0.05,9.03,11]-dodecane (CL-20) and dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate (TKX-50)) was studied at different mass ratios using DSC. The criteria to judge the compatibility between the materials were based on a standardization agreement (STANAG 4147). The thermodynamic study results revealed that DFTNAN possessed superior thermal safety and stability. The experimental of compatibility results indicated that the mass ratios of the high explosives in the DFTNAN/RDX, DFTNAN/HMX and DFTNAN/CL-20 compositions more than 40%, 60% and 70% exhibited good compatibility, whereas DFTNAN/TKX-50 demonstrated poor compatibility.

Details

Title
Thermal Decomposition Kinetics and Compatibility of 3,5-difluoro-2,4,6-trinitroanisole (DFTNAN)
Author
Hu, Fei 1 ; Lin-Jian, Wang 1 ; Zhao, Wei 1 ; Yu-Cun, Liu 1 ; Su-Ming, Jing 1 ; Liu, Ping 2 ; Jin-Xuan, He 3 

 School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China; [email protected] (F.H.); [email protected] (L.-J.W.); [email protected] (W.Z.) 
 Chongqing Hongyu Precision Industry Group Co., Ltd., Chongqing 402760, China; [email protected] 
 Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China 
First page
4186
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2558846897
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.