Full text

Turn on search term navigation

© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper reports a novel procedure to fabricate multilayer composite biofilms based on halloysite nanotubes (HNTs) and sustainable polymers. Among the biopolymers, the non-ionic (hydroxypropyl cellulose) and cationic (chitosan) molecules were selected. The nanocomposites were prepared by the sequential casting of ethanol solutions of hydroxypropyl cellulose and aqueous dispersions of chitosan/HNTs. The composition of the bio-nanocomposites was systematically changed in order to investigate the effect of the hydroxypropyl cellulose/HNTs ratio on the thermal properties of the films, which were investigated by differential scanning calorimetry (DSC) and thermogravimetry (TG). DSC studies were conducted in the static air (oxidative atmosphere), while TG measurements were carried out under nitrogen flow (inert atmosphere). The analysis of DSC data provided the enthalpy and the temperature for the oxidative degradation of the bio-nanocomposites. These results were helpful to estimate the efficacy of the well-compacted middle layer of HNTs as a flame retardant. TG experiments were performed at a variable heating rate and the collected data were analyzed by the Friedman’s method (non-isothermal thermogravimetric approach) with the aim of studying the kinetics of the hydroxypropyl cellulose degradation in the multilayer nanocomposites. This work represents an advanced contribution for designing novel sustainable nanocomposites with excellent thermal behavior as a consequence of their peculiar multilayer structure.

Details

Title
Thermal Properties of Multilayer Nanocomposites Based on Halloysite Nanotubes and Biopolymers
Author
Bertolino, Vanessa; Cavallaro, Giuseppe; Milioto, Stefana; Parisi, Filippo; Lazzara, Giuseppe
Publication year
2018
Publication date
Sep 2018
Publisher
MDPI AG
e-ISSN
2504477X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2122528404
Copyright
© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.