It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
One way to save electrical energy is by directly reducing the energy consumption and using materials that able to absorb heat. The best material in absorbing heat is paraffin. Paraffin is a group of organic Phase Change Material (PCM) which has high latent heat. Adding nanoparticles to the paraffin is expected to increase the latent heat of nano-PCM. The research aims to find out the thermal properties of nano PCM based paraffin and engineered to improve its latent heat. In this research, PCM material used is paraffin with Fe3O4, CuO, TiO2, and ZnO nanoparticles are added. Nano – PCM is synthesized using sonification methods with variations of 5, 10, and 15 wt%. Latent heat of thermal properties and a melting point of paraffin nano-PCM are measured using Differential Scanning Calorimetry (DSC). The results show the latent heat of paraffin nano-PCM has increased by 20.67%, 78.89%, 7.5%, and 20.17% for the addition of Fe3O4 (5 wt%), CuO (10 wt%), TiO2 (15 wt%), and ZnO (5 wt%) respectively. The better nano PCM in storing latent heat is paraffin-CuO at a mass fraction of 10 wt%. Meanwhile, the addition of nanoparticles has no significant effect on the melting point. These results showed that paraffin based nano-PCM is an excellent thermal energy storage.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Applied Heat Transfer Research Group, Department of Mechanical, Faculty of Engineering, Universitas Indonesia, Depok,16424, Indonesia