Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The increase in industrialization and development has tremendously diminished fossil fuel resources. Moreover, the excessive use of fossil fuels has resulted in the release of various toxic gases and an increase in global warming. Hence, necessitating the need to search for a renewable energy source. In this study, sesame waste biomass (SWB), which is abundantly available in Pakistan, has been used as feedstock for obtaining bio-oil using the pyrolysis technique. Pyrolysis was carried out using thermogravimetry and a pyrolysis chamber. Firstly, thermogravimetric analysis was performed on biomass with/without a laboratory synthesized catalyst Ni/Co/MCM-41 in nitrogen at different temperature programmed rates of 5, 10, 15, and 20 °C/min. A four-stage weight loss was observed that pointed toward the vaporization of water, and degradation of hemicelluloses, cellulose, and lignin. The kinetics parameters were determined using the Kissinger equation. The activation energy for the decomposition reaction of hemicelluloses, cellulose, and lignin, without catalyst, was observed as 133.02, 141.33, and 191.22 kJ/mol, respectively, however, with catalyst it was found as 91.45, 99.76, and 149.65 kJ/mol, respectively. In the catalyzed reaction the results showed the lowest activation energy, which is an indication of the fact that the catalyst is successful in reducing the activation energy to a sufficient level. As the TG/DTG showed active degradation between 200 and 400 °C, therefore, the waste sesame biomass over Ni-Co/MCM-41 was pyrolyzed within the same temperature range in the pyrolysis chamber. Temperature and time were optimized for maximum oil yield. A maximum oil yield of 38% was achieved at 330 °C and 20 min. The oil obtained was studied using GCMS. The physicochemical characteristics of the oil were assessed, and it was found that if the oil was upgraded properly, it could serve as a fuel for commercial use.

Details

Title
Thermocatalytic Decomposition of Sesame Waste Biomass over Ni-Co-Doped MCM-41: Kinetics and Physicochemical Properties of the Bio-Oil
Author
Nisar, Jan 1 ; Ullah, Raqeeb 1 ; Ali, Ghulam 1   VIAFID ORCID Logo  ; Shah, Afzal 2   VIAFID ORCID Logo  ; Din, Muhammad Imran 3   VIAFID ORCID Logo  ; Hussain, Zaib 3 ; Amin, Roohul 4 

 National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan 
 Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan 
 School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan 
 Department of Chemistry, GC Peshawar, University of Peshawar, Peshawar 25120, Pakistan 
First page
3731
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2812461314
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.