Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Bulk CoCrFeNiNb0.45 eutectic high entropy alloy (EHEA) with ultrafine-lamellar microstructure shows outstanding thermal stability. The EHEA offers opportunities for the development of thermoelectric materials. In this paper, the thermoelectric properties of a CoCrFeNiNbx (x = 0, 0.25, and 0.45) EHEA system were investigated. The results indicated that the electrical conductivity decreased with a rise in Nb content in the CoCrFeNiNbx alloys, which resulted from the increased eutectic structure and phase interface. Moreover, the thermal conductivity increased with increased Nb content at low temperature (T ≤ 473 K), while thermal conductivity decreased at high temperature (T > 573 K). The CoCrFeNiNb0.45 full eutectic high entropy alloy exhibited the lowest thermal conductivity and higher thermoelectric figure of merit (ZT) at a high temperature (T > 573 K), which shows great promise for the thermoelectric application at high temperature.

Details

Title
Thermoelectric Properties of CoCrFeNiNbx Eutectic High Entropy Alloys
Author
Han, Kaiming; Jiang, Hui; Huang, Tiandang; Wei, Mingyu
First page
762
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20734352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2439472545
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.