Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this work, optical coatings with a gradient of the refractive index are described. Its aim was to deposit, using the RF PECVD method, films of variable composition (ranging from silicon carbon-oxide to silicon carbon-nitride) for a smooth change of their optical properties enabling a production of the filter with a refractive index gradient. For that purpose, two organosilicon compounds, namely tetramethyldisilazane and hexamethyldisilazane, were selected as precursor compounds. The results reveal better optical properties of the materials obtained from the latter source. Depending on whether deposited in pure oxygen atmosphere or under conditions of pure nitrogen, the refractive index of the coatings amounted to 1.65 and to 2.22, respectively. By using a variable composition N2/O2 gas mixture, coatings of intermediate magnitudes of “n” were acquired. The optical properties were investigated using both UV-Vis absorption spectroscopy and variable angle spectroscopic ellipsometry. The chemical structure of the coatings was studied with the help of Fourier transform infrared and X-ray photoelectron spectroscopies. Finally, atomic force microscopy was applied to examine their surface topography. As the last step, a “cold mirror” type interference filter with a gradient of refractive index was designed and manufactured.

Details

Title
Thin SiNC/SiOC Coatings with a Gradient of Refractive Index Deposited from Organosilicon Precursor
Author
Szymanowski, Hieronim; Olesko, Katarzyna; Kowalski, Jacek; Fijalkowski, Mateusz  VIAFID ORCID Logo  ; Gazicki-Lipman, Maciej; Sobczyk-Guzenda, Anna  VIAFID ORCID Logo 
First page
794
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20796412
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2436210493
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.