Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, we propose a three-dimensional autonomous drone exploration system (ADES) with a lightweight and low-latency saliency prediction model to explore unknown environments. Several studies have applied saliency prediction in drone exploration. However, these studies are not sufficiently mature. For example, the computational complexity and the size of the developed prediction models have not been considered. In addition, some studies have only proposed saliency prediction models without actually applying them to drones. The ADES system proposed in this paper has a small and fast saliency prediction model and uses a novel drone exploration approach based on visual-inertial odometry to solve the practical problems encountered during drone exploration, such as collisions with and the repeated exploration of salient objects. The proposed ADES system performs comparably to the state-of-the-art, multiple-discontinuous-image saliency prediction network TA-MSNet and enables drones to explore unknown environments with high efficiency.

Details

Title
Three-Dimensional Drone Exploration with Saliency Prediction in Real Unknown Environments
Author
Ming-Ru Xie  VIAFID ORCID Logo  ; Shing-Yun, Jung  VIAFID ORCID Logo  ; Kuan-Wen, Chen  VIAFID ORCID Logo 
First page
488
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22264310
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819259828
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.