Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Recent studies indicate that bow foil biomimetic systems can significantly improve ship propulsion in waves. In this paper, the DTMB 5415 ship model is taken as the object and a semi-active elastic flapping foil is proposed to install at its bow underwater position. When a ship sails in head wave, heave and pitch motion will occur, which will drive the bow foil to form heave motion. According to the working characteristics of elastic foil, bow foil can generate forward thrust under drive of given heave motion. At first, co-simulation of the ship with self-pitching bow foil in head waves is realized by ISIS-CFD solver and preliminarily realizes drag reduction and thrust increase effect of the bow foil. At the same time, it is found that the effect of bow foil on hull drag reduction is reflected in two aspects, one is the additional thrust generated by the bow foil and the other is that suppression of the bow foil on hull motion also reduces hull resistance in waves. Then, in order to optimize the working characteristics of elastic bow foil, the influence of spring stiffness and span length of the bow foil on drag reduction and thrust increase effect is discussed. A preliminary spring optimization result is obtained, as well as the influence of the span length of the bow foil on the system.

Details

Title
Thrust Enhancement of DTMB 5415 with Elastic Flapping Foil in Regular Head Waves
Author
Lei Mei 1   VIAFID ORCID Logo  ; Yan, Wenhui 2 ; Zhou, Junwei 1 ; Shi, Weichao 3   VIAFID ORCID Logo 

 School of Ocean Engineering, Harbin Institute of Technology (Weihai), Weihai 264209, China 
 School of Mechanical and Material Engineering, North China University of Technology, No. 5 Jinyuanzhuang Road, Beijing 100144, China 
 Department of Naval Architecture, Ocean and Marine Engineering, Strathclyde University, Glasgow G4 0LZ, UK 
First page
632
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20771312
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791665482
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.