It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We study the behavior of the A* search algorithm when coupled with a heuristic h satisfying (1-epsilon1)h* <= h <=(1+epsilon2)h*, where 0 <= epsilon1, epsilon2 < 1 are small constants and h* denotes the optimal cost to a solution. We prove a rigorous, general upper bound on the time complexity of A* search on trees that depends on both the accuracy of the heuristic and the distribution of solutions. Our upper bound is essentially tight in the worst case; in fact, we show nearly matching lower bounds that are attained even by non-adversarially chosen solution sets induced by a simple stochastic model. A consequence of our rigorous results is that the effective branching factor of the search will be reduced as long as epsilon1+epsilon2 < 1 and the number of near-optimal solutions in the search tree is not too large. We go on to provide an upper bound for A* search on graphs and in this context establish a bound on running time determined by the spectrum of the graph.
We then experimentally explore to what extent our rigorous upper bounds predict the behavior of A* in some natural, combinatorially-rich search spaces. We begin by applying A* to solve the knapsack problem with near-accurate admissible heuristics constructed from an efficient approximation algorithm for this problem. We additionally apply our analysis of A* search for the partial Latin square problem, where we can provide quite exact analytic bounds on the number of near-optimal solutions. These results demonstrate a dramatic reduction in effective branching factor of A* when coupled with near-accurate heuristics in search spaces with suitably sparse solution sets.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer