Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents a thorough review of methods used in various research articles published in the field of time signature estimation and detection from 2003 to the present. The purpose of this review is to investigate the effectiveness of these methods and how they perform on different types of input signals (audio and MIDI). The results of the research have been divided into two categories: classical and deep learning techniques, and are summarized in order to make suggestions for future study. More than 110 publications from top journals and conferences written in English were reviewed, and each of the research selected was fully examined to demonstrate the feasibility of the approach used, the dataset, and accuracy obtained. Results of the studies analyzed show that, in general, the process of time signature estimation is a difficult one. However, the success of this research area could be an added advantage in a broader area of music genre classification using deep learning techniques. Suggestions for improved estimates and future research projects are also discussed.

Details

Title
Time Signature Detection: A Survey
Author
Abimbola, Jeremiah  VIAFID ORCID Logo  ; Kostrzewa, Daniel  VIAFID ORCID Logo  ; Kasprowski, Pawel  VIAFID ORCID Logo 
First page
6494
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2581042506
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.