Abstract
Background: In certain medical applications, it is necessary to be able to determine the position of a needle inside the body, specifically with regards to identifying certain tissue types. By measuring the electrical impedance of specific tissue types, it is possible to determine the type of tissue the tip of the needle (or probe) is at. Materials and Methods: Two methods have been investigated for electric impedance detection; bipolar and monopolar. Commercially available needle electrodes are of a monopolar type. Although many patents exist on the bipolar setups, these have not as yet been commercialized. This paper reports a comparison of monopolar and bipolar setups for tissue type determination. In vitro experiments were carried out on pork to compare this investigation with other investigations in this field. Results: The results show that both monopolar and bipolar setups are capable of determining tissue type. However, the bipolar setup showed slightly better results; the difference between the different soft tissue type impedances was greater compared to the monopolar method. Conclusion: Both monopolar and bipolar electrical impedance setups work very similarly in inhomogeneous volumes such as biological tissue. There is a clear potential for clinical applications with impedance-based needle guidance, with both the monopolar and bipolar setups. It is, however, worth noting that the bipolar setup is more versatile.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer