It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper proposes a density-based topology optimization method for natural convection problems using the lattice Boltzmann method (LBM). As the LBM can be developed as a completely explicit scheme, its attractive features over the traditional ones, such as the finite element method, are (1) suitability for solving unsteady flow problems and (2) scalability for large-scale parallel computing. We develop an LBM code for solving unsteady natural convection problems and provide its sensitivity analysis based on the so-called adjoint lattice Boltzmann method. Notably, the adjoint equation is derived from the discrete particle velocity Boltzmann equation and can be solved similarly to the original LBM concerning unsteady natural convection problems. We first show that the proposed method can produce similar results to the previous work in a steady-state natural convection problem. We then demonstrate the efficacy of the proposed method through 2D numerical examples concerning unsteady natural convection. As a large-scale problem, we tackle a 3D unsteady natural convection problem on a parallel supercomputer. All the developed codes written in C++ are available at https://github.com/PANFACTORY/PANSLBM2.git.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Tokyo University of Science, Department of Mechanical Engineering, Tokyo, Japan (GRID:grid.143643.7) (ISNI:0000 0001 0660 6861)
2 Osaka University, Department of Mechanical Engineering, Osaka, Japan (GRID:grid.136593.b) (ISNI:0000 0004 0373 3971)