Oda et al. Earth, Planets and Space (2016) 68:109 DOI 10.1186/s40623-016-0493-2
Toward robust deconvolution ofpass-through paleomagnetic measurements: new tool toestimate magnetometer sensor response andlaser interferometry ofsample positioning accuracy
Hirokuni Oda1*http://orcid.org/0000-0001-7142-9208
Web End = , Chuang Xuan2 and Yuhji Yamamoto3
http://orcid.org/0000-0001-7142-9208
Web End = Introduction
The development of pass-through superconducting rock magnetometers (SRM) has enabled continuous high
sensitivity measurement of remanent magnetizations of sediments (e.g., Dodson etal. 1974; Goree and Fuller 1976; Weeks etal. 1993), leading to rapid accumulation of high-resolution paleomagnetic and environmental magnetic records. The continuous records acquired on pass-through SRMs, especially those with u-channels (Tauxe etal. 1983), have revolutionized paleomagnetism
*Correspondence: [email protected]
1 Institute of Geology and Geoinformation, Geological Survey of Japan, AIST, Central 7, 1-1-1 Higashi, Tsukuba 305-8567, JapanFull list of author information is available at the end of the article
2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/
Web End =http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Oda et al. Earth, Planets and Space (2016) 68:109
Page 2 of 13
through reconstruction of paleomagnetic eld at unprecedented resolution and scale (e.g., Valet and Meynadier 1993; Guyodo and Valet 1999; Valet etal. 2005; Roberts 2006; Ohno et al. 2008; Channell et al. 2009; Roberts etal. 2013) and greatly contributed to the paleomagnetic data archive based on sediments (Xuan and Channell 2009;Brown etal. 2015).
Continuous measurements on pass-through SRMs, however, are subjected to smoothing and distortion due to the convolution of sensor responses, controlled by the geometry of pick-up coils and superconducting shield, with the magnetization of paleomagnetic sample (e.g., Shibuya and Michikawa 2000; Oda and Xuan 2014). Deconvolution is needed to reconstruct higher-resolution magnetization time series with less distortion (e.g., Dodson etal. 1974; Constable and Parker 1991; Oda and Shibuya 1996; Guyodo et al. 2002; Jackson et al. 2010). Oda and Xuan (2014) recently developed an improved deconvolution algorithm based on ABIC minimization method considering realistic errors in sample length and measurement position. Based on the algorithm, stand-alone graphical software UDECON was developed to directly read pass-through measurement data and perform fast and reliable deconvolution optimization (Xuan and Oda 2015).
Accurate measurements of sensor response including cross-terms are required to conduct deconvolution (e.g., Parker and Gee 2002; Jackson etal. 2010; Oda and Xuan 2014). Oda and Xuan (2014) developed a practical tool to measure sensor response systematically on 5-mm-spacing grids in three orthogonal directions. However, it is possible to improve the efficiency, repeatability and accuracy of the sensor response measurements by better constraining the point source position relative to individual grids as the authors used a double-sided tape to x the Point Source Cube on the guide block.
Based on repeated measurements of a u-channel sample, Oda and Xuan (2014) demonstrated that accuracy of the deconvolved magnetizations is signicantly controlled by SRM measurement noises. However, we currently have little knowledge on the characteristics of noises on the SRMs. A main source of SRM measurement noise is the positioning error of SRM tracking system (e.g., Jackson etal. 2010; Oda and Xuan 2014), which could contaminate both sensor response and sample measurements.
In order to facilitate implementation of the UDECON software (Xuan and Oda 2015) and to further understand uncertainties associated with pass-through measurements and deconvolution, we present new tool and procedure for accurate and more efficient measurements of SRM sensor response and use laser interferometry to evaluate the positioning error of the SRM
tracking system. The new tools and procedures were used to measure the sensor response of SRM at Kochi Core Center (KCC), Japan, one of the core repositories of International Ocean Discovery Program (IODP), to ensure better reproducibility and accuracy of point source positions on the grid with improved orthogonality of three-axes orientation of the magnetic point source. The laser interferometry-acquired sample tray positions were compared with stepping motor counts. We also discuss the characteristics of positions measured with laser interferometry and the positioning errors associated with the SRM track system as well as their potential inuence on deconvolution.
Response function determination
SRM atKCC
Figure1 shows a schematic view of the u-channel pass-through SRM system (2G Enterprises model 755R) at KCC. The at sample tray is made of ber-reinforced plastics and is placed on a track. Both ends of the tray are connected to the original thread provided by the SRM manufacturer (2G Enterprises). The thread is tied to a laddered plastic rope that is connected to a gear attached to a stepping motor. At each end of the track there are clockwise (CW) and counterclockwise (CCW) limit switches. The SRM system at KCC uses the 2G Long Core software (version 3.4) installed on a Windows PC for its operation. Sample Handler Utility included in the software allowed us to control the position of the sample tray on the track by driving the stepping motor at two different speeds (slow or fast).
Sensor response measurements
Oda and Xuan (2014) used a 5-mm plastic cube with a point source in the center (Point Source Cube hereafter) and a larger cube with 25mm edge length and one surfacehaving 55=25 marked grid points. The Point
Source Cube was attached onto the grid point on the surface of the larger cube using double-sided tape (Fig. 1b in Oda and Xuan 2014). The orientation of Point Source Cube on the X- and Y-axes plane was controlled with a plastic rod, and orientation along the Z-axis depends on the atness of the double-sided tape. Here, we use new tool and procedure to facilitate the precise measurements of sensor response for the SRM at KCC. We modied one surface of the larger cube to include 16 grid positions evenly distributed with 6 mm 6 mm spacing, each of which has four surrounding plastic walls to accurately hold the Point Source Cube (Fig.2a, b). Point Source Cube was placed to each of these grid positions to measure sensor response with magnetization orientation parallel to +X-, +Y- or +Z-axes. The measurement data collected at every 1-mm interval for 300mm along
Oda et al. Earth, Planets and Space (2016) 68:109
Page 3 of 13
the track were then interpolated (or extrapolated for the bottom grid points) into 1-mm grids from 6-mm measurement grids over the cross-sectional area of the larger cube surface. With the above grid data, integration was conducted over the cross-sectional area of a u-channel sample (i.e., horizontal=18mm; vertical=19mm; bottom height from the tray=2mm; centered along track).
Magnetic moment of the Point Source Cube was measured on a spinner magnetometer (Natsuhara Giken Co. Ltd.) at the Geological Survey of Japan. It has declination, inclination, and magnetic moment of 0.2, 0.3, and 5.30107Am2, respectively.
KCC sensor response
Complete tensor components of sensor response curve for the u-channel SRM at KCC (KCC SRM sensor response) are shown in Fig.2c. The three diagonal terms (i.e., XX, YY, and ZZ in Fig. 2c) of the KCC SRM sensor response tensor show single peaks with their full widths at half maxima (FWHM) of 46mm (XX), 46mm (YY), and 54 mm (ZZ). The positions of central maximum of XX, YY, and ZZ are 0.02, 0.04, and 0.07mm, respectively. The XX and YY terms have negative lobes on both sides. There are also cross-terms between X-or Y-axis and Z-axis (i.e., XY, YX, XZ, and ZX). The
prominent feature is that the ZX cross-term shows negative and positive peak values of ~25 % relative to the central peak value of the main ZZ term. This could be explained by the relatively large oset of the center of X-, Y-, and Z-coils relative to the center of u-channel about 8-mm downward (-X direction) for KCC sensor response, which is calculated by the XY position of minimum of peak values along Z-axis. The XY or YX terms are about 10 or 6 % of peak values in the XX or YY main terms, which could be minimized by rotating X-axis magnetization and Y-axis magnetization 4.5 counterclockwise along Z-axis (looking at SRM from the home position). This observation suggests that XY coil system is rotated 4.5 counterclockwise relative to the plane of tray and track.
Comparison andinterpretation ofsensor responses
The KCC SRM sensor response shows dierent shapes from that of SRM at Oregon State University (OSU SRM sensor response). Oda and Xuan (2014) reported that OSU SRM sensor response has FWHM of 80mm (XX), 76mm (YY), and 73mm (ZZ) for the main terms, which are apparently 1.41.7 times wider than those of the KCC SRM sensor response. FWHM of XX or YY components
Oda et al. Earth, Planets and Space (2016) 68:109
Page 4 of 13
Oda et al. Earth, Planets and Space (2016) 68:109
Page 5 of 13
are narrower than ZZ component for the KCC SRM sensor response, whereas opposite is true for the OSU SRM sensor response. Other features to note are that there is a single peak in the ZZ term for the KCC SRM sensor response, while the OSU SRM sensor response shows double peak separated ~20mm from each other. In addition, XX and YY terms of the KCC SRM sensor response have negative lobes on both sides, whereas the OSU SRM sensor response has almost no such negative lobes.
These dierences in the sensor responses could be caused by dierent designs between SRMs at KCC (cooled with liquid helium) and OSU (cooled with pulse tube). For instance, the KCC SRM pick-up coils may have narrower widths along the SRM track. Jackson etal. (2010) noted that the geometry of the superconducting shield in the dry SRM (cooled with pulse tube) is dierent from that in the conventional liquid He-cooled SRM, and the sensor response function is dierent accordingly. It is therefore critical to estimate the sensor response accurately for both types of SRM in order to successfully utilize the deconvolution. The narrow width of pick-up coils with narrow FWHM of KCC SRM sensor response is suitable for reconstruction of higher-resolution paleo-magnetic signals with deconvolution.
Among the same type of SRMs, there are also some dierence in sensor response functions. For example, SRM at OSU is a similar type to SRM at the Institute of Rock Magnetism (IRM), University of Minnesota. However, SRM at IRM has asymmetry with negative lobe on one side of sensor responses of XX and YY (Jackson etal. 2010). The asymmetry of SRM at IRM might have originated from the oset of center of the superconducting shield relative to the center of pick-up coils of X- and Y-axes.
Rotation of ~5 for XY pick-up coils relative to the plane of the tray seems to be a common feature of the 2G SRMs (e.g., Parker and Gee 2002; Jackson etal. 2010; Oda and Xuan 2014). This might be related to the construction of SRMs and/or the installation at the laboratories. 2G Enterprises documented the following in their Long Core v1.0 manual in 1996: This misalignment angle can be determined by measuring a core once, then measuring it again after rotating the sample 180 about its +X axis.
This description is not included in later versions of manual for the 2G Long Core software (e.g., v3.0 and v3.2).
Considering the fact that SRM users are not provided with the information on the geometry of pick-up coils and superconducting shield, rotation angle of XY pick-up coils, and sensor responses in real shape, it is necessary to estimate sensor responses accurately with a point source for each laboratory. An integrated sensor response can then be constructed for cross-sectional area corresponding to measured samples such as
the u-channels. The new tool and procedure provide an eective approach in improving the efficiency and accuracy of sensor response curve estimates.
Laser interferometry ofSRM tray position Experimental setup oflaser interferometry
Accurate positions of the SRM sample tray were measured with laser interferometry relative to the home position (-Z direction; see Fig. 1). The measurements were conducted using a laser encoder unit RLU10 (Renishaw plc) together with a laser detector head (RLD 90 RRI), a laser beam reector (RLR10-A3-XF), and a USB interface unit (RSU10). The laser encoder unit was connected to a PC with the USB interface unit, and the interferometry was conducted with a positioning accuracy measurement software provided by Renishaw plc.
The laser detector head (Fig. 1a) was attached on an adjustable support, xed on a stable tripod, and placed ~465mm behind the CW limit switch of the SRM system. The laser beam reector (Fig.1b) was mounted on a small adjustable support and rmly attached to the sample tray using double-sided tape. Laser beam generated from the laser encoder unit is transmitted through a laser ber to the laser detector unit. It was then emitted from the laser detector passing through SRM and reected with the laser beam reector attached to the sample tray. The reected laser beam was received with the detector head, which was used for the interference measurements together with the source laser beam. Approximate distance between the laser detector head and the laser beam reector when the tray is at the home position was measured as ~3895mm.
Alignment of laser beam was conducted with special care using the tripod and the adjustable support while observing the beam on a paper guide attached on the laser beam reector at the home and CW limit switch positions. The nal adjustments were made with the software by maximizing output signal of the interferometry. Each of the laser interferometry measurements was conducted relative to the home position at a sampling frequency of 1 kHz. Environmental corrections were conducted for all measurements with temperature of 23.5C, humidity of 40%, and atmospheric pressure of 101.45kPa. Static measurements without motion of the tray show a standard deviation of 0.7 m, possibly due to background mechanical vibrations and variability of environmental parameters.
The laser interferometry was conducted in two directions of the tray movements, i.e., toward (CW direction) or away (CCW direction) from the SRM, at two speeds (slow or fast) with or without a sample. The stepping motor was driven incrementally by manual operation with 100 stepping motor counts (corresponding to
Oda et al. Earth, Planets and Space (2016) 68:109
Page 6 of 13
4.78mm for KCC SRM) either in a manner that the tray moved toward or away from the SRM, while the laser interferometry data were being collected. The positions measured with laser interferometry were recorded and compared with the distance expected from the stepping motor counts. Table 1 summarizes laser interferometry measurements conducted, while the tray is moving with and without a sample. A 1020-mm-long u-channel lled with sediment (weight: 770g) was used for laser interferometry measurements with sample.
SRM tray position measured withlaser interferometry
When no sample was placed on the tray (a u-channel sample was placed on the tray), continuous measurements of laser interferometry were successful up to about 600 (200) mm from the home position, where signal suddenly became weaker than the threshold for continuous tracking of interference. The difficulty of laser beam tracking beyond a few tens of cm could be related to irregularities (or topography) of the SRM track.
We started the collection of measurements either from the home position (CW; toward SRM) or from
the position where the previous measurements were terminated due to poor interference signal (CCW; away from SRM). The tray movement was controlled by manually clicking the Move button in the Sample Handler Utility of the 2G Long Core software. Figure3 shows the position, speed, and acceleration of the tray for laser interferometry measurements with (right) and without (left) a u-channel sample. In order to visualize the details, horizontal axis was expanded for data collected within the rst ~2 s and is plotted in Fig. 4. The peak amplitude of the vibration is ~200 m without the sample (Fig. 4a) and ~50 m with the sample (Fig. 4b). Vibration of the tray position settles down after ~0.6s without the sample and after ~0.4s with the sample. Average speed of the tray without the sample is ~50mm/s (Fig.4a, middle panel) both for slow and for fast modes. The speed of the tray with the sample is also centered about 50mm/s (Fig.4b, middle panel). It seems that the speed of the tray has no signicant inuence on the position dierence.
Positions of the SRM tray at KCC measured with laser interferometry were compared with those expected from the corresponding stepping motor counts, and the dierences between the two (position dierence) are plotted against the latter in Fig.5. The position acquired by laser interferometry for each move was calculated by averaging laser interferometry data for a 200-ms time interval right before the next move (shaded area in Fig.4). The dierences without sample in the direction toward SRM (CW direction; Fig. 5a) from stepping motor count are within 0.4 to 0.3mm for the entire 600-mm measured interval. It is notable that the position dierences show comparable patterns in addition to random noises (Fig. 5a). Histograms of the position dierences (Fig. 6a) show distributions with means between 0.12 and 0.05 mm and fairly consistent standard deviations between 0.10 and 0.12mm.
The position dierences without sample in the direction away from SRM (CCW direction; Fig.5b) show a gap between the rst measurement (reference position for laser interferometry, which is always zero) and the second measurement (the position after the rst move) away from the tray. This feature may imply a backlash related to change in the direction of stepping motor motion. Similar to that observed for CW measurements, uctuation of the position dierences shows comparable pattern on position length scales of >a few centimeters for all four measurements (note that Run #12_2 or Run #14_2 is the continuation of Run #12 or Run #14 after recovery of laser tracking). Histograms of the position dierences (Fig.6b) show distributions with means between 0.35 and 0.12mm and standard deviations between 0.08 and 0.15 mm. The dominating negative means for the runs
Table 1 List ofmeasurements forlaser interferometry
Run # With/without U-channel CW/CCW Measured length (mm)
7 Without U-channel CW 568.88 Without U-channel CCW 616.69 Without U-channel CW 568.810 Without U-channel CCW 607.111 Without U-channel CW 425.412 Without U-channel CCW 358.5 12_2a Without U-channel CCW 262.913 Without U-channel CW 568.814 Without U-channel CCW 282.0 14_2a Without U-channel CCW 243.815 With U-channel CW 90.816 With U-channel CW 90.817 With U-channel CW 109.918 With U-channel CW 105.219 With U-channel CCW 138.620 With U-channel CW 105.221 With U-channel CCW 129.122 With U-channel CW 224.723 With U-channel CCW 248.625 With U-channel CW 229.426 With U-channel CCW 253.3
Run #1 through #6 are test runs without appropriate setup of temperature, humidity, and pressure and discarded. Run #24 is a static measurement for the measurement of ambient noise
CW clockwise, CCW counterclockwise
a Measurements restarted after loosing track of laser
Oda et al. Earth, Planets and Space (2016) 68:109
Page 7 of 13
in CCW directions might be due to backlash mentioned above.
Although the records with sample were obtained for shorter intervals, the calculated position dierences are between 0.3 and 0.9 mm for the total move of 250 mm in the direction toward SRM (CW direction;
Fig. 5c) and are between 0.7 and 0.3 mm away from SRM (CCW direction; Fig. 5d). A signicant increase of ~0.5mm in the position dierences was observed at position ~100mm for the two runs toward SRM (CW direction; Fig.5c). This might be related to the irregularity of the stepping motor belt or the roughness (or topography) of the track surface. The histograms for the runs in CW direction (Fig. 6c) show distributions with means between 0.02 and 0.44 mm and standard deviations between 0.11 and 0.24mm. The position differences calculated for the runs in the CCW direction (Fig.6d) show distributions with means between 0.19 and 0.35mm and standard deviations between 0.11 and 0.15mm.
Positioning error ofSRM track
The gap observed in multiple laser interferometry measurements conducted while moving the tray away from the SRM (CCW direction; Fig. 5b), possibly due to a backlash of the stepping motor, could be accounted for by the new parameter position shift introduced to the optimized deconvolution by Oda and Xuan (2014). The reason why such gap is absent in the CW direction measurements (e.g., Figure 5a) might be because the measurement in this direction starts from the home position, which is always calibrated through an initial move from the CCW limit switch (Fig.1).
The positioning error of measurements on a SRM depends on the conguration in each laboratory. The source of stochastic errors observed in Fig. 5 might be random errors originating from the combination of multiple components of the tracking system (i.e., stepping motor, handler rope, pulley, and tray). Based on repeated measurements of a 1.5-m-long u-channel sample, Oda and Xuan (2014) estimated >0.06-mm positioning error
Oda et al. Earth, Planets and Space (2016) 68:109
Page 8 of 13
for the SRM at OSU. It should be noted that the positioning error estimated from the standard deviation of repeated pass-through measurement is not absolute error but deviation from the average measurement at each position.
The rst direct precise measurement of tray positions with laser interferometry conducted in this study revealed repeatable uctuations (on length scales of >a few centimeters) in positioning of the SRM track system, which might be related to the condition of the various components of the track system (e.g., track or laddered rope). The apparently repeatable large position error of ~0.5 mm observed at ~100 mm for the measurements with u-channel samples (in CW direction, Fig. 5c) may need to be accounted for to achieve better deconvolution results. It should be noted that the repeatable stepwise positioning error could inuence all the demagnetization steps and better to be avoided.
Figure 7a shows a histogram of position dierence distribution calculated with all laser interferometry
measurements in both CW and CCW directions, while no sample was placed on the tray. The average of the distribution is 0.12 mm with a standard deviation of 0.18 mm. The distribution for all laser interferometry measurements with a u-channel sample has average of 0.11mm with a standard deviation of 0.27mm (Fig.7b). It appears that standard deviation of the position dierence is larger for the measurements with a u-channel sample on the tray.
Deconvolution experiments using simulated data withpositioning error
In order to investigate the eect of the observed positioning error on deconvolution, we conducted optimized deconvolution experiments 50,000 times using synthetic data with realistic position errors. Synthetic ideal measurements were rst produced by convolving a synthetic magnetization signal that contains an excursion event used by Oda and Xuan (2014) with the KCC SRM sensor response. We then introduced random position
Oda et al. Earth, Planets and Space (2016) 68:109
Page 9 of 13
errors to the KCC SRM sensor response data according to the histogram of position dierence distribution acquired from the laser interferometry measurements,
while no sample was placed on the tray (Fig.7a). Similarly, at each sample measurement position, a random position error was introduced based on the histogram of
Oda et al. Earth, Planets and Space (2016) 68:109
Page 10 of 13
Oda et al. Earth, Planets and Space (2016) 68:109
Page 11 of 13
Oda et al. Earth, Planets and Space (2016) 68:109
Page 12 of 13
position dierences acquired from the laser interferometry measurements with a u-channel sample on the tray (Fig.7b). For both sensor response and synthetic sample measurement data, signal with positions at regular interval of 1cm was used for the simulations. For each simulation the ideal measurement and response function data were resampled by spline interpolation based on positions displaced by adding random positioning errors. The measurement and response function resampled from the displaced positions were used for deconvolution as if the positions were not displaced.
The intensity and inclination data from the simulations are shown in Fig.7c, d. Solid black curve is the true signal (artificial magnetization data set) used to produce synthetic measurements. An example of synthetic measurement is shown in blue curves, which was produced by convolving the true signal with the sensor response. Compared with the true signal, the measured signal shows significant smoothing and distortion due to the convolution effect of the pass-through system. SRM at KCC cannot successfully resolve the ~8-cm-long excursion event in the original true signal. In Fig.7c, d, red dots are deconvolved data using measurement and response function data without adding any position errors. Mean (yellow curve) and the 95% confidence intervals (shaded area) for all simulated deconvolution data (a total of 50,000 times) using the both measurement and response function data with realistic position errors suggest that deconvolution can successfully restore the true signal (both in amplitude and in direction) overcoming majority of the smoothing and distortion caused by the convolution effect. The excursion event was clearly recovered in the deconvolved measurements. Examples of histograms of inclination for 50,000 deconvolved signal show Gaussian-like distributions with standard deviations of ~0.3, ~0.3,~3, and ~0.8 for positions at 15, 50, 72, and 123, respectively. A prominent evidence is that the midpoint of excursion with true inclination of 78.2 at 72cm could be recovered successfully with relatively small uncertainty, which demonstrates the effectiveness of ABIC-minimizing deconvolution for measurement and response function data with realistic position errors.
Conclusions
New practical tool and procedure were developed to facilitate rapid and accurate measurements of SRM sensor response. Systematic measurements of Point Source Cube on SRM at KCC, Japan, were used to produce an accurate estimate for the sensor response, which can be used for deconvolution of u-channel pass-through measurements made on the SRM at KCC. A possible
4.5 counterclockwise rotation (looking at SRM from the home position) of the XY coil system relative to the Z-axis and signicant ZX cross-term components were observed. As one of the main research facilities associated with the core repositories of the IODP, the SRM at KCC plays an important role in the collection of critical pass-through data for paleomagnetism research. The accurate estimate of sensor response function of the SRM at KCC, therefore, provides a valuable tool with broader impact to restore high-resolution signals for measurements through deconvolution.
Accurate measurements of SRM tray positions were conducted with and without a 1020-mm-long sediment u-channel at intervals of 4.78 mm using laser interferometry. Position vibrations were observed in all measurements following the stop of the tray movement. Measurements without (with) u-channel show vibrations with peak amplitudes of ~200 m (~50 m), which diminishes in ~0.6 s (~0.4 s). Comparison with the position expected from the stepping motor counts indicates random discrepancies with standard deviations of ~0.10.2 mm. Large gaps were observed just after the change in the direction of the stepping motor, which might be related to backlash of the stepping motor. Stepwise change of ~0.5 mm was recognized for measurements with u-channel sample on the tray, presumably due to the condition of the tray. Positioning error is larger with u-channel sample. Reproducible features in the position dierences suggest inuence of track/ rope shapes on individual positions. Positioning error is generally between 0.06 and 1mm. Although the current positioning system is accurate enough to reproduce 8-cm-long excursion event, it is recommended to build tray tracking system with better positioning accuracy to improve the pass-through measurements and performance of optimized deconvolution for higher resolution and accuracy.
We have conducted deconvolution experiments using synthetic data with realistic position errors acquired from the laser interferometry measurements. Synthetic measurement data were produced by convolving synthetic magnetization signal that includes an excursion event with the sensor response measured for KCC SRM. For both measurements and sensor response, positioning errors were randomly introduced based on the laser interferometry measurements conducted in this study. Deconvolution using the synthetic measurement data and response function estimates for SRM successfully restored the true signal overcoming majority of the smoothing and distortion caused by the convolution eect. The excursion event was clearly recovered in the deconvolved measurements with a maximum error angle of ~3.
Oda et al. Earth, Planets and Space (2016) 68:109
Page 13 of 13
Abbreviations
ABIC: Akaikes Bayesian Information Criterion; AF: alternating eld; CW: clockwise; CCW: counterclockwise; FWHM: full widths at half maxima; IODP: International Ocean Discovery Program; IRM: Institute of Rock Magnetism; KCC: Kochi Core Center; OSU: Oregon State University; SQUID: superconducting quantum interference device; SRM: superconducting rock magnetometer.
Authors contributions
HO designed the experiments and wrote and edited most of the manuscripts. CX contributed to the calculation of sensor response and deconvolution with simulated data and wrote and edited the manuscript. YY provided the facility and helped the experiments and edited the manuscript. All authors read and approved the nal manuscript.
Author details
1 Institute of Geology and Geoinformation, Geological Survey of Japan, AIST, Central 7, 1-1-1 Higashi, Tsukuba 305-8567, Japan. 2 School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK.
3 Center for Advanced Marine Core Research, Kochi University, B200 Monobe, Nankoku, Kochi 783-8502, Japan.
Acknowledgements
Hirokuni Oda was supported by JSPS Grant-in-Aid for Scientic Research (A) Funding Nos. 25247082 and 25247073. Chuang Xuan is supported by a startup fund provided by the University of Southampton. JSPS provided a Visiting Fellowship for Foreign Researchers (Award No. PE14034) for Chuang Xuan to visit Geological Survey of Japan (GSJ), National Institute of Advanced Industrial Science and Technology (AIST), to conduct work related to this research. This study was performed under the cooperative research program of Center for Advanced Marine Core Research (CMCR), Kochi University (Accept Nos. 14B040 and 15A048). Part of the measurements was conducted with facilities of GSJ-Lab., and a plastic block for the point source was fabricated with the help of Tomomi Kobayashi at AIST. The authors would like to thank Ayako Katayama at AIST who helped the production of gures. The study could not be completed without the construction of SRMs provided by 2G Enterprises, especially the pioneering works by William S. Goree.
Competing interests
The authors declare that they have no competing interests.
Received: 8 April 2016 Accepted: 15 June 2016
References
Brown MC, Donadini F, Nilsson A, Panovska S, Frank U, Korhonen K, Schuberth
M, Korte M, Constable CG (2015) GEOMAGIA50.v3: 2. A new paleomagnetic database for lake and marine sediments. Earth Planets Space 67:70. doi:http://dx.doi.org/10.1186/s40623-015-0233-z
Web End =10.1186/s40623-015-0233-z Channell JET, Xuan C, Hodell DA (2009) Stacking paleointensity and oxygen isotope data for the last 1.5 Myr (PISO-1500). Earth Planet Sci Lett 283:1423. doi:http://dx.doi.org/10.1016/j.epsl.2009.03.012
Web End =10.1016/j.epsl.2009.03.012 Constable C, Parker R (1991) Deconvolution of longcore palaeomagnetic measurementsspline therapy for the linear problem. Geophys J Int 104:453468. doi:http://dx.doi.org/10.1111/j.1365-246X.1991.tb05693.x
Web End =10.1111/j.1365-246X.1991.tb05693.x Dodson RE, Fuller MD, Pilant W (1974) On the measurement of the remanent magnetism of long cores. Geophys Res Lett 1:185188. doi:http://dx.doi.org/10.1029/GL001i004p00185
Web End =10.1029/ http://dx.doi.org/10.1029/GL001i004p00185
Web End =GL001i004p00185 Goree WS, Fuller MD (1976) Magnetometers using RF-driven SQUIDs and their applications in rock magnetism and paleomagnetism. Rev Geophys Space Phys 14:591608Guyodo Y, Valet JP (1999) Global changes in intensity of the Earths magnetic eld during the past 800 kyr. Nature 399:249252. doi:http://dx.doi.org/10.1038/20420
Web End =10.1038/20420
Guyodo Y, Channell JET, Thomas RG (2002) Deconvolution of u-channel paleo-magnetic data near geomagnetic reversals and short events. Geophys Res Lett 29:1845. doi:http://dx.doi.org/10.1029/2002GL014927
Web End =10.1029/2002GL014927
Jackson M, Bowles JA, Lascu I, Solheid P (2010) Deconvolution of u channel magnetometer data: experimental study of accuracy, resolution, and stability of dierent inversion methods. Geochem Geophys Geosyst 11:Q07Y10. doi:http://dx.doi.org/10.1029/2009GC002991
Web End =10.1029/2009GC002991
Oda H, Shibuya H (1996) Deconvolution of long-core paleomagnetic data of
Ocean Drilling Program by Akaikes Bayesian Information Criterion minimization. J Geophys Res 101:28152834. doi:http://dx.doi.org/10.1029/95JB02811
Web End =10.1029/95JB02811 Oda H, Xuan C (2014) Deconvolution of continuous paleomagnetic data from pass-through magnetometer: a new algorithm to restore geomagnetic and environmental information based on realistic optimization. Geochem Geophys Geosyst 15:39073924. doi:http://dx.doi.org/10.1002/2014GC005513
Web End =10.1002/2014GC005513 Ohno M, Murakami F, Komatsu F, Guyodo Y, Acton G, Kanamatsu T, Evans HF,
Nanayama F (2008) Paleomagnetic directions of the GaussMatuyama polarity transition recorded in drift sediments (IODP Site U1314) in the North Atlantic. Earth Planets Space 60:e13e16Parker RL, Gee JS (2002) Calibration of the pass-through magnetometer-II. Application. Geophys J Int 150:140152. doi:http://dx.doi.org/10.1046/j.1365-246X.2002.01692.x
Web End =10.1046/j.1365-246X.2002.01692.x Roberts AP (2006) High-resolution magnetic analysis of sediment cores: strengths, limitations and strategies for maximizing the value of long-core magnetic data. Phys Earth Planet Inter 156:162178. doi:http://dx.doi.org/10.1016/j.pepi.2005.03.021
Web End =10.1016/j. http://dx.doi.org/10.1016/j.pepi.2005.03.021
Web End =pepi.2005.03.021 Roberts AP, Tauxe L, Heslop D (2013) Magnetic paleointensity stratigraphy and high-resolution Quaternary geochronology: successes and future challenges. Quat Sci Rev 61:116Shibuya H, Michikawa T (2000) Calculation of superconducting rock magnetometer response. Kumamoto J Sci Earth Sci 16:116Tauxe L, Labrecque JL, Dodson D, Fuller M (1983) U channelsa new technique for paleomagnetic analysis of hydraulic piston cores. EOS Trans Am Geophys Union 64:219Valet JP, Meynadier L (1993) Geomagnetic eld intensity and reversals during the past four million years. Nature 366:234238. doi:http://dx.doi.org/10.1038/366234a0
Web End =10.1038/366234a0 Valet JP, Meynadier L, Guyodo Y (2005) Geomagnetic dipole strength and reversal rate over the past two million years. Nature 435:802805. doi:http://dx.doi.org/10.1038/nature03674
Web End =10.1038/nature03674 Weeks R, Laj C, Endignoux L, Fuller M, Roberts A, Manganne R, Blanchard E,
Goree W (1993) Improvements in long-core measurement techniques: applications in palaeomagnetism and palaeoceanography. Geophys J Int 114:651662Xuan C, Channell JET (2009) UPmag: MATLAB software for viewing and processing u-channel or other pass-through paleomagnetic data. Geochem Geophys Geosyst 10:Q10Y07. doi:http://dx.doi.org/10.1029/2009GC002584
Web End =10.1029/2009GC002584 Xuan C, Oda H (2015) UDECON: deconvolution optimization softwarefor restoring high-resolution records from pass-through paleo-magnetic measurements. Earth Planets Space 67:183. doi:http://dx.doi.org/10.1186/s40623-015-0332-x
Web End =10.1186/ http://dx.doi.org/10.1186/s40623-015-0332-x
Web End =s40623-015-0332-x
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Earth, Planets and Space is a copyright of Springer, 2016.
Abstract
Pass-through superconducting rock magnetometers (SRM) offer rapid and high-precision remanence measurements for continuous samples that are essential for modern paleomagnetism studies. However, continuous SRM measurements are inevitably smoothed and distorted due to the convolution effect of SRM sensor response. Deconvolution is necessary to restore accurate magnetization from pass-through SRM data, and robust deconvolution requires reliable estimate of SRM sensor response as well as understanding of uncertainties associated with the SRM measurement system. In this paper, we use the SRM at Kochi Core Center (KCC), Japan, as an example to introduce new tool and procedure for accurate and efficient estimate of SRM sensor response. To quantify uncertainties associated with the SRM measurement due to track positioning errors and test their effects on deconvolution, we employed laser interferometry for precise monitoring of track positions both with and without placing a u-channel sample on the SRM tray. The acquired KCC SRM sensor response shows significant cross-term of Z-axis magnetization on the X-axis pick-up coil and full widths of ~46-54 mm at half-maximum response for the three pick-up coils, which are significantly narrower than those (~73-80 mm) for the liquid He-free SRM at Oregon State University. Laser interferometry measurements on the KCC SRM tracking system indicate positioning uncertainties of ~0.1-0.2 and ~0.5 mm for tracking with and without u-channel sample on the tray, respectively. Positioning errors appear to have reproducible components of up to ~0.5 mm possibly due to patterns or damages on tray surface or rope used for the tracking system. Deconvolution of 50,000 simulated measurement data with realistic error introduced based on the position uncertainties indicates that although the SRM tracking system has recognizable positioning uncertainties, they do not significantly debilitate the use of deconvolution to accurately restore high-resolution signal. The simulated "excursion" event associated with a significant magnetization intensity drop was clearly recovered in the deconvolved measurements with a maximum error of ~3° in inclination.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer