Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In order to deal with dynamic traffic flow, adaptive traffic signal controls using reinforcement learning are being studied. However, most of the related studies are difficult to apply to the real field considering only mathematical optimization. In this study, we propose a reinforcement learning-based signal optimization model with constraints. The proposed model maintains the sequence of typical signal phases and considers the minimum green time. The model was trained using Simulation of Urban MObility (SUMO), a microscopic traffic simulator. The model was evaluated in the virtual environment similar to a real road with multiple intersections connected. The performance of the proposed model was analyzed by comparing the delay and number of stops with a reinforcement learning model that did not consider constraints and a fixed-time model. In a peak hour, the proposed model reduced the delay from 3 min 15 s to 2 min 15 s and the number of stops from 11 to 4.7 compared to the fixed-time model.

Details

Title
Traffic Signal Optimization for Multiple Intersections Based on Reinforcement Learning
Author
Gu, Jaun 1 ; Lee, Minhyuck 1 ; Chulmin Jun 1   VIAFID ORCID Logo  ; Han, Yohee 2 ; Kim, Youngchan 2 ; Kim, Junwon 2 

 Department of Geoinformatics, University of Seoul, Seoul 02504, Korea; [email protected] (J.G.); [email protected] (M.L.) 
 Department of Transportation Engineering, University of Seoul, Seoul 02504, Korea; [email protected] (Y.H.); [email protected] (Y.K.); [email protected] (J.K.) 
First page
10688
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2602006837
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.