Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Plastic waste generation has increased dramatically every day. Indiscriminate disposal of plastic wastes can lead to several negative impacts on the environment, such as a significant increase in greenhouse gas emissions and water pollution. Therefore, it is wise to think of other alternatives to reduce plastic wastes without affecting the environment, including converting them into valuable products using effective methods such as pyrolysis. Products from the pyrolysis process encompassing of liquid, gas, and solid residues (char) can be turned into beneficial products, as the liquid product can be used as a commercial fuel and char can function as an excellent adsorbent. The char produced from plastic wastes could be modified to enhance carbon dioxide (CO2) adsorption performance. Therefore, this review attempts to compile relevant knowledge on the potential of adsorbents derived from waste plastic to capture CO2. This review was performed in accordance with PRISMA guidelines. The plastic-waste-derived activated carbon, as an adsorbent, could provide a promising method to solve the two environmental issues (CO2 emission and solid management) simultaneously. In addition, the future perspective on char derived from waste plastics is highlighted.

Details

Title
Transforming Plastic Waste into Porous Carbon for Capturing Carbon Dioxide: A Review
Author
Hussin, Farihahusnah 1   VIAFID ORCID Logo  ; Mohamed Kheireddine Aroua 2   VIAFID ORCID Logo  ; Kassim, Mohd Azlan 1 ; Umi Fazara Md Ali 3   VIAFID ORCID Logo 

 Research Centre for Carbon Dioxide Capture and Utilisation (CCDCU), School of Engineering and Techno logy, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, Petaling Jaya 47500, Selangor, Malaysia; [email protected] 
 Research Centre for Carbon Dioxide Capture and Utilisation (CCDCU), School of Engineering and Techno logy, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, Petaling Jaya 47500, Selangor, Malaysia; [email protected]; Department of Engineering, Lancaster University, Lancaster LA1 4YW, UK 
 Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia; [email protected]; Centre of Excellence for Biomass Utilization (COEBU), Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia 
First page
8421
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2612790475
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.