Content area
Full text
ABSTRACT
This paper enumerates a low power, high speed design of flip-flop having less number of transistors. In flip-flop design only one transistor is being clocked by short pulse train which is known as True Single Phase Clocking (TSPC) flip-flop. The true single-phase clock (TSPC) is common dynamic flip-flop which performs the flip-flop operation with little power and at high speeds. In this paper, an extensive comparison of existing designs of positive edge triggered True Single Phase Clocking Flip-flop is carried out. As True Single Phase Clocking (TSPC) flip-flop design has small area and low power consumption. And it can be used in various applications like digital VLSI clocking system, microprocessors, buffers etc. The analysis for various flip-flops for power dissipation and propagation delay has been carried out at different foundries. The designed flip-flops are compared in terms of power consumption and propagation delay and power delay product using DSCH and MICROWIND tools.
KEYWORDS - CMOS, TSPC flip-flop, Power, Delay, Figure of Merit (FOM).
I. INTRODUCTION
Flip-flops are the basic building block of the data path structure. They allow for the storage of data, processed by combinational circuit and synchronization of operation at a given clock frequency. They are the fundamental building block of the digital electronics systems used in computers and many other types of systems. Flip flop can be either simple or clocked; simple devices are known as latches. A latch is level sensitive, and mainly used as storage element. And clocked devices are known as flip-flop. Flip-flop is edge sensitive means their output only changes on a single type of clock edge (positive or negative going edge). Flip-Flop is an electronic circuit that stores the logical state of one or more data input signal in response to a clocking pulse. They are often used in computational circuits to operate in selected sequences during recurring clock intervals to receive and maintain data for a limited time period sufficient for other circuits within a system to further process data [1]. Data is stored in flip-flop at each rising and falling edge of clock signal so that it can be applied as inputs to other combinational or sequential circuits, such flip-flops that store data on rising or falling edge of clock are referred as...




