Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Since it was introduced in 1997, in-tube solid-phase microextraction (in-tube SPME), which uses a capillary column as extraction device, has been continuously developed as online microextraction coupled to LC systems (in-tube SPME-LC). In the last decade, new couplings have been evaluated on the basis of state-of-the-art LC instruments, including direct coupling of in-tube SPME to MS/MS systems, without chromatographic separation, for high-throughput analysis. In-tube SPME coupling to MS/MS has been possible thanks to the selectivity of capillary column coatings and MS/MS systems (SRM mode). Different types of capillary columns (wall-coated open-tubular, porous-layer open-tubular, sorbent-packed, porous monolithic rods, or fiber-packed) with selective stationary phases have been developed to increase the sorption capacity and selectivity of in-tube SPME. This review focuses on the in-tube SPME principle, extraction configurations, current advances in direct coupling to MS/MS systems, experimental parameters, coatings, and applications in different areas (food, biological, clinical, and environmental areas) over the last years.

Details

Title
In-Tube Solid-Phase Microextraction Directly Coupled to Mass Spectrometric Systems: A Review
Author
Caroline Fernandes Grecco  VIAFID ORCID Logo  ; Israel Donizeti de Souza  VIAFID ORCID Logo  ; Carvalho Oliveira, Igor Gustavo  VIAFID ORCID Logo  ; Costa Queiroz, Maria Eugênia  VIAFID ORCID Logo 
First page
394
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22978739
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756777445
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.