Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Short-term rainfall prediction by radar echo map extrapolation has been a very hot area of research in recent years, which is also an area worth studying owing to its importance for precipitation disaster prevention. Existing methods have some shortcomings. In terms of image indicators, the predicted images are not clear enough and lack small-scale details, while in terms of precipitation accuracy indicators, the prediction is not accurate enough. In this paper, we proposed a two-stage model (two-stage UA-GAN) to achieve more accurate prediction echo images with more details. For the first stage, we used the Trajectory Gated Recurrent Unit (TrajGRU) model to carry out a pre-prediction, which proved to have a good ability to capture spatiotemporal movement of rain field. In the second stage, we proposed a spatiotemporal attention enhanced Generative Adversarial Networks (GAN) model with a U-Net structure and a new deep residual attention module in order to carry out the refinement and improvement of the first-stage prediction. Experimental results showed that our model outperforms the optical-flow based method Real-Time Optical Flow by Variational Methods for Echoes of Radar (ROVER), and some well-known Recurrent Neural Network (RNN)-based models (TrajGRU, PredRNN++, ConvGRU, Convolutional Long Short-Term Memory (ConvLSTM)) in terms of both image detail indexes and precipitation accuracy indexes, and is visible to the naked eye to have better accuracy and more details.

Details

Title
Two-Stage UA-GAN for Precipitation Nowcasting
Author
Xu, Liujia 1 ; Niu, Dan 2 ; Zhang, Tianbao 1 ; Chen, Pengju 1 ; Chen, Xunlai 3   VIAFID ORCID Logo  ; Li, Yinghao 1 

 School of Automation, Southeast University, Nanjing 210096, China 
 School of Automation, Southeast University, Nanjing 210096, China; Key Laboratory of Measurement and Control of CSE, Ministry of Education Research Laboratory, Nanjing 210096, China 
 Shenzhen Key Laboratory of Severe Weather in South China, Shenzhen Meteorological Bureau, Shenzhen 518040, China 
First page
5948
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748560793
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.