Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The application of silica aerogel has been limited because of its poor mechanical properties. In order to expand the application scope of silica aerogel, this study fabricated an ultra-flexible conductive silica aerogel as a multiparameter sensor. The sample is fabricated by introducing poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) on a base of ultra-flexible silica aerogel, which was prepared by a diene synthesis reaction at atmospheric pressure. The pressure, temperature, and humidity can be converted into electrical signals. The pressure sensitivity can reach up to 54.88 kPa−1, and the detection limit is as low as 5 Pa. The temperature resolution is up to 0.1 K, and the response time of humidity is within 4 s. More importantly, the developed multiparameter sensor can be self-powered to realize multiparameter sensing of pressure, temperature, and humidity. The ultra-flexible conductive silica aerogel is a promising candidate for monitoring human activities and fire-affected areas.

Details

Title
Ultrasensitive and Self-Powered Multiparameter Pressure–Temperature–Humidity Sensor Based on Ultra-Flexible Conductive Silica Aerogel
Author
He, Song 1   VIAFID ORCID Logo  ; Du, Chunhua 1 ; Sheng, Hongliang 2 ; He, Chunxiang 1 ; Liu, Xinyu 1 ; Jin, Xin 1 ; Chen, Qilin 1 ; Tian, Fuliang 1 

 School of Safety Science and Emergency Management, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China 
 Wuhan Building Material Industry Design & Research Institute Co., Ltd., Wuhan 430200, China 
First page
162
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23102861
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779528838
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.