It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Quantum dots (QDs) often exhibit unique behaviors because the reduction in lateral size leads to stronger quantum confinement effects and a higher surface-to-volume ratio in comparison with larger two-dimensional nanosheets. However, the preparation of homogeneous QDs remains a longstanding challenge. This work reports the preparation of high-yield and ultrasmall tin disulfide (SnS2) QDs by combining top–down and bottom–up approaches. The as-prepared SnS2 QDs have a uniform lateral size of 3.17 ± 0.62 nm and a thicknesses 2.39 ± 0.88 nm. A series of self-powered photoelectrochemical-type photodetectors (PDs) utilizing the SnS2 QDs as photoelectrodes are also constructed. Taking advantage of the tunable bandgaps and high carrier mobility of the SnS2, our PDs achieve a high photocurrent density of 16.38 μA cm−2 and a photoresponsivity of 0.86 mA W−1, and good long-term cycling stability. More importantly, the device can display obvious photoresponse, even at zero bias voltage (max), and greater weak-light sensitivity than previously reported SnS2-based PDs. Density functional theory calculation and optical absorption were employed to reveal the working mechanism of the SnS2 QDs-based PDs. This study highlights the prospective applications of ultrasmall SnS2 QDs and provides a new route towards future design of QDs-based optoelectronic devices.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
2 School of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, P. R. China
3 Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China