Content area
Full Text
RESUMEN
Los libros y los cursos de Álgebra Abstracta (o Álgebra Moderna) definen y estudian varios tipos de estructuras algebráicas, como los grupos, los espacios vectoriales, los anillos, los ideales y los cuerpos (o campos) de racionalidad. Estas estructuras se definen y se analizan en términos de unas operaciones que se caracterizan mediante propiedades que se presentan como salidas de la nada y que en realidad son solamente inferidas por abstracción de operaciones muy conocidas en disciplinas más elementales como la Geometría Euclidiana, la Teoría de Números y el Análisis Real. Pero nada se dice allí acerca de que hay sistemas de objetos físicos con relaciones mutuas, que son modelos (o ejemplos) rigurosamente fieles de tales estructuras algebraicas. Aquí se presenta uno de tales modelos, que está constituido por una clase de objetos eléctricos llamados cuadripolos, y que pueden conectarse mutuamente en paralelo (como ejemplo de una «suma» de tales cuadripolos) y en serie (como ejemplo de un «productos entre ellos»). En este sistema, y con estas dos operaciones eléctricas, se muestra, por consideraciones eléctricas, que se puede formar un modelo eléctrico de varias estructuras algebraicas: de un grupo conmutativo, de un espacio vectorial, de un anillo de entericidad y de un campo de racionalidad.
PALAbRAs cLAvEs: Álgebra Abstracta; circuitos eléctricos; modelos físicos; grupos (algebraicos); anillos (algebraicos), cuerpos (campos).
AN ELECTRICAL MODEL OF ALGEBRAIC STRUCTURES
ABSTRACT
Textbooks and courses in Abstract Algebra (or Modern Algebra) present and explain several kinds of algebraic structures -such as abelian groups, vector spaces, rings, ideals and fields- as if these were "free constructions of the human spirit". Usually mathematicians treat these structures as defined and analyzed in terms of operations which are characterized by properties which are presented as if comming up from a theoretical and purely platonic vacuum of ideas, in spite that they have been obtained indeed by inference and abstraction from well know, concrete operations in subjects such as Euclidean Geometry, Number Theory and Real Analysis. No considerations are done in those books about the existence and knowledge of physical objects endowed with mutual linkages, which are faithful models (or examples) of such algebraic structures with their inner operations. This paper presents one of those models, consisting of a class of electrical objects, the so-called...