Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Intelligent detection of marine organism plays an important part in the marine economy, and it is significant to detect marine organisms quickly and accurately in a complex marine environment for the intelligence of marine equipment. The existing object detection models do not work well underwater. This paper improves the structure of EfficientDet detector and proposes the EfficientDet-Revised (EDR), which is a new marine organism object detection model. Specifically, the MBConvBlock is reconstructed by adding the Channel Shuffle module to enable the exchange of information between the channels of the feature layer. The fully connected layer of the attention module is removed and convolution is used to cut down the amount of network parameters. The Enhanced Feature Extraction module is constructed for multi-scale feature fusion to enhance the feature extraction ability of the network to different objects. The results of experiments demonstrate that the mean average precision (mAP) of the proposed method reaches 91.67% and 92.81% on the URPC dataset and the Kaggle dataset, respectively, which is better than other object detection models. At the same time, the processing speed reaches 37.5 frame per second (FPS) on the URPC dataset, which can meet the real-time requirements. It can provide a useful reference for underwater robots to perform tasks such as intelligent grasping.

Details

Title
Underwater Object Detection Based on Improved EfficientDet
Author
Jia, Jiaqi 1 ; Fu, Min 1 ; Liu, Xuefeng 2 ; Zheng, Bing 1 

 College of Electronic Engineering, Ocean University of China, Qingdao 266100, China; Sanya Oceanography Institution, Ocean University of China, Sanya 572024, China 
 College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266061, China 
First page
4487
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716581891
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.