Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As a data-driven approach, deep learning requires a large amount of annotated data for training to obtain a sufficiently accurate and generalized model, especially in the field of computer vision. However, when compared with generic object recognition datasets, aerial image datasets are more challenging to acquire and more expensive to label. Obtaining a large amount of high-quality aerial image data for object recognition and image understanding is an urgent problem. Existing studies show that synthetic data can effectively reduce the amount of training data required. Therefore, in this paper, we propose the first synthetic aerial image dataset for ship recognition, called UnityShip. This dataset contains over 100,000 synthetic images and 194,054 ship instances, including 79 different ship models in ten categories and six different large virtual scenes with different time periods, weather environments, and altitudes. The annotations include environmental information, instance-level horizontal bounding boxes, oriented bounding boxes, and the type and ID of each ship. This provides the basis for object detection, oriented object detection, fine-grained recognition, and scene recognition. To investigate the applications of UnityShip, the synthetic data were validated for model pre-training and data augmentation using three different object detection algorithms and six existing real-world ship detection datasets. Our experimental results show that for small-sized and medium-sized real-world datasets, the synthetic data achieve an improvement in model pre-training and data augmentation, showing the value and potential of synthetic data in aerial image recognition and understanding tasks.

Details

Title
UnityShip: A Large-Scale Synthetic Dataset for Ship Recognition in Aerial Images
Author
He, Boyong 1 ; Li, Xianjiang 1 ; Huang, Bo 1 ; Gu, Enhui 2 ; Guo, Weijie 3 ; Wu, Liaoni 1   VIAFID ORCID Logo 

 School of Aerospace Engineering, Xiamen University, Xiamen 361102, China; [email protected] (B.H.); [email protected] (X.L.); [email protected] (B.H.) 
 School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China; [email protected] 
 School of Informatics, Xiamen University, Xiamen 361005, China; [email protected] 
First page
4999
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2612851719
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.