Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This research effort is geared towards revealing the latent potential of discarded shoe polish that might be repurposed as an asphalt fluxing agent for the construction of durable and sustainable road surfaces. To drive this creative invention, the effect of various proportions of waste shoe polish (e.g., 5, 10 and 15 wt. % WSP) on the performance of base AP-5 bitumen was inspected in great detail. A meticulous investigation of the chemical, physical, and rheological properties of the resultant combinations was carried out using a variety of state-of-the-art laboratory techniques, specifically: thin-layer chromatography-flame ionization detection (TLC-FID), Fourier transform-infrared spectroscopy (FT-IR), needle penetration, ring-and-ball softening point, Brookfield viscometer, ductility, flash/fire points, dynamic shear rheometer (DSR), multiple stress-creep recovery (MSCR), and bending beam rheometer (BBR) tests. The Iatroscan data disclosed that the continuous feeding of binder with WSP had a minor impact on SARA fractional distribution, regardless of aging. According to the FT-IR scan, the stepwise addition of WSP to the binder did not result in any significant chemical alterations in the blends. The combined outcomes of the DSR/BBR/empirical test methods forecasted that the partly bio-sourced additive would greatly improve the mixing–compaction temperatures, workability, and coating–adhesion properties of bituminous mixtures while imparting them with outstanding anti-aging/cracking attributes. In short, the utilization of waste shoe polish as a fluxing agent for hot asphalt mix production and application is not only safe, feasible, and affordable, but it has the potential to abate the pollution caused by the shoe-care market while simultaneously enhancing the overall performance of the pavement and extending its service lifespan.

Details

Title
Upcycling Discarded Shoe Polish into High Value-Added Asphalt Fluxing Agent for Use in Hot Mix Paving Applications
Author
Nciri, Nader 1   VIAFID ORCID Logo  ; Kim, Namho 2 

 School of Industrial Design & Architectural Engineering, Korea University of Technology & Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan 31253, Chungnam, Korea; School of Energy, Materials & Chemical Engineering, Korea University of Technology & Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan 31253, Chungnam, Korea 
 School of Industrial Design & Architectural Engineering, Korea University of Technology & Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan 31253, Chungnam, Korea 
First page
6454
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716581548
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.