Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Urban particulate matter forecasting is regarded as an essential issue for early warning and control management of air pollution, especially fine particulate matter (PM2.5). However, existing methods for PM2.5 concentration prediction neglect the effects of featured states at different times in the past on future PM2.5 concentration, and most fail to effectively simulate the temporal and spatial dependencies of PM2.5 concentration at the same time. With this consideration, we propose a deep learning-based method, AC-LSTM, which comprises a one-dimensional convolutional neural network (CNN), long short-term memory (LSTM) network, and attention-based network, for urban PM2.5 concentration prediction. Instead of only using air pollutant concentrations, we also add meteorological data and the PM2.5 concentrations of adjacent air quality monitoring stations as the input to our AC-LSTM. Hence, the spatiotemporal correlation and interdependence of multivariate air quality-related time-series data are learned by the CNN–LSTM network in AC-LSTM. The attention mechanism is applied to capture the importance degrees of the effects of featured states at different times in the past on future PM2.5 concentration. The attention-based layer can automatically weigh the past feature states to improve prediction accuracy. In addition, we predict the PM2.5 concentrations over the next 24 h by using air quality data in Taiyuan city, China, and compare it with six baseline methods. To compare the overall performance of each method, the mean absolute error (MAE), root-mean-square error (RMSE), and coefficient of determination (R2) are applied to the experiments in this paper. The experimental results indicate that our method is capable of dealing with PM2.5 concentration prediction with the highest performance.

Details

Title
Urban PM2.5 Concentration Prediction via Attention-Based CNN–LSTM
Author
Li, Songzhou; Xie, Gang; Ren, Jinchang  VIAFID ORCID Logo  ; Guo, Lei  VIAFID ORCID Logo  ; Yang, Yunyun; Xu, Xinying
First page
1953
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2377791099
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.