Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Today, social networks are becoming increasingly popular and indispensable, where users usually have multiple accounts. It is of considerable significance to conduct user identity linkage across social networks. We can comprehensively depict diversified characteristics of user behaviors, accurately model user profiles, conduct recommendations across social networks, and track cross social network user behaviors by user identity linkage. Existing works mainly focus on a specific type of user profile, user-generated content, and structural information. They have problems of weak data expression ability and ignored potential relationships, resulting in unsatisfactory performances of user identity linkage. Recently, graph neural networks have achieved excellent results in graph embedding, graph representation, and graph classification. As a graph has strong relationship expression ability, we propose a user identity linkage method based on a heterogeneous graph attention network mechanism (UIL-HGAN). Firstly, we represent user profiles, user-generated content, structural information, and their features in a heterogeneous graph. Secondly, we use multiple attention layers to aggregate user information. Finally, we use a multi-layer perceptron to predict user identity linkage. We conduct experiments on two real-world datasets: OSCHINA-Gitee and Facebook-Twitter. The results validate the effectiveness and advancement of UIL-HGAN by comparing different feature combinations and methods.

Details

Title
User Identity Linkage Across Social Networks by Heterogeneous Graph Attention Network Modeling
Author
Wang, Ruiheng  VIAFID ORCID Logo  ; Zhu, Hongliang  VIAFID ORCID Logo  ; Wang, Lu  VIAFID ORCID Logo  ; Chen, Zhaoyun; Gao, Mingcheng; Yang, Xin  VIAFID ORCID Logo 
First page
5478
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2433018153
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.