Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Music is important in everyday life, and music therapy can help treat a variety of health issues. Music listening is a technique used by music therapists in various clinical treatments. As a result, music therapists must have an intelligent system at their disposal to assist and support them in selecting the most appropriate music for each patient. Previous research has not thoroughly addressed the relationship between music features and their effects on patients. The current paper focuses on identifying and predicting whether music has therapeutic benefits. A machine learning model is developed, using a multi-class neural network to classify emotions into four categories and then predict the output. The neural network developed has three layers: (i) an input layer with multiple features; (ii) a deep connected hidden layer; (iii) an output layer. K-Fold Cross Validation was used to assess the estimator. The experiment aims to create a machine-learning model that can predict whether a specific song has therapeutic effects on a specific person. The model considers a person’s musical and emotional characteristics but is also trained to consider solfeggio frequencies. During the training phase, a subset of the Million Dataset is used. The user selects their favorite type of music and their current mood to allow the model to make a prediction. If the selected song is inappropriate, the application, using Machine Learning, recommends another type of music that may be useful for that specific user. An ongoing study is underway to validate the Machine Learning model. The developed system has been tested on many individuals. Because it achieved very good performance indicators, the proposed solution can be used by music therapists or even patients to select the appropriate song for their treatment.

Details

Title
Using Deep Learning to Recognize Therapeutic Effects of Music Based on Emotions
Author
Modran, Horia Alexandru 1   VIAFID ORCID Logo  ; Chamunorwa, Tinashe 1   VIAFID ORCID Logo  ; Ursuțiu, Doru 2   VIAFID ORCID Logo  ; Samoilă, Cornel 3   VIAFID ORCID Logo  ; Hedeșiu, Horia 4   VIAFID ORCID Logo 

 Faculty of Electrical Engineering and Computer Science, Transilvania University of Brasov, 500036 Brasov, Romania 
 Faculty of Electrical Engineering and Computer Science, Transilvania University of Brasov, 500036 Brasov, Romania; Romanian Academy of Scientists, 050044 Bucharest, Romania 
 Faculty of Electrical Engineering and Computer Science, Transilvania University of Brasov, 500036 Brasov, Romania; Romanian Academy of Technical Sciences, 010413 Bucharest, Romania 
 Electrical Machines and Drives Department, Technical University of Cluj Napoca, 400027 Cluj-Napoca, Romania 
First page
986
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767296463
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.