Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Objective: To validate the use of electronic algorithms based on International Classification of Diseases (ICD)-10 codes to identify outpatient visits for urinary tract infections (UTI), one of the most common reasons for antibiotic prescriptions. Methods: ICD-10 symptom codes (e.g., dysuria) alone or in addition to UTI diagnosis codes plus prescription of a UTI-relevant antibiotic were used to identify outpatient UTI visits. Chart review (gold standard) was performed by two reviewers to confirm diagnosis of UTI. The positive predictive value (PPV) that the visit was for UTI (based on chart review) was calculated for three different ICD-10 code algorithms using (1) symptoms only, (2) diagnosis only, or (3) both. Results: Of the 1087 visits analyzed, symptom codes only had the lowest PPV for UTI (PPV = 55.4%; 95%CI: 49.3–61.5%). Diagnosis codes alone resulted in a PPV of 85% (PPV = 84.9%; 95%CI: 81.1–88.2%). The highest PPV was obtained by using both symptom and diagnosis codes together to identify visits with UTI (PPV = 96.3%; 95%CI: 94.5–97.9%). Conclusions: ICD-10 diagnosis codes with or without symptom codes reliably identify UTI visits; symptom codes alone are not reliable. ICD-10 based algorithms are a valid method to study UTIs in primary care settings.

Details

Title
Validating Use of Electronic Health Data to Identify Patients with Urinary Tract Infections in Outpatient Settings
Author
Germanos, George; Light, Patrick; Zoorob, Roger; Salemi, Jason  VIAFID ORCID Logo  ; Khan, Fareed; Hansen, Michael; Gupta, Kalpana; Trautner, Barbara; Grigoryan, Larissa
First page
536
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20796382
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2438352106
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.