Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents the validation of a marker-less motion capture system used to evaluate the upper limb stress of subjects using exoskeletons for locomotion. The system fuses the human skeletonization provided by commercial 3D cameras with forces exchanged by the user to the ground through upper limbs utilizing instrumented crutches. The aim is to provide a low cost, accurate, and reliable technology useful to provide the trainer a quantitative evaluation of the impact of assisted gait on the subject without the need to use an instrumented gait lab. The reaction forces at the upper limbs’ joints are measured to provide a validation focused on clinically relevant quantities for this application. The system was used simultaneously with a reference motion capture system inside a clinical gait analysis lab. An expert user performed 20 walking tests using instrumented crutches and force platforms inside the observed volume. The mechanical model was applied to data from the system and the reference motion capture, and numerical simulations were performed to assess the internal joint reaction of the subject’s upper limbs. A comparison between the two results shows a root mean square error of less than 2% of the subject’s body weight.

Details

Title
Validation of Marker-Less System for the Assessment of Upper Joints Reaction Forces in Exoskeleton Users
Author
Pasinetti, Simone  VIAFID ORCID Logo  ; Nuzzi, Cristina  VIAFID ORCID Logo  ; Covre, Nicola; Luchetti, Alessandro; Maule, Luca  VIAFID ORCID Logo  ; Serpelloni, Mauro  VIAFID ORCID Logo  ; Lancini, Matteo  VIAFID ORCID Logo 
First page
3899
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2424606100
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.