Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Continuous measurement of heart rate variability (HRV) in the short and ultra-short-term using wearable devices allows monitoring of physiological status and prevention of diseases. This study aims to evaluate the agreement of HRV features between a commercial device (Bora Band, Biosency) measuring photoplethysmography (PPG) and reference electrocardiography (ECG) and to assess the validity of ultra-short-term HRV as a surrogate for short-term HRV features. PPG and ECG recordings were acquired from 5 healthy subjects over 18 nights in total. HRV features include time-domain, frequency-domain, nonlinear, and visibility graph features and are extracted from 5 min 30 s and 1 min 30 s duration PPG recordings. The extracted features are compared with reference features of 5 min 30 s duration ECG recordings using repeated-measures correlation, Bland–Altman plots with 95% limits of agreements, Cliff’s delta, and an equivalence test. Results showed agreement between PPG recordings and ECG reference recordings for 37 out of 48 HRV features in short-term durations. Sixteen of the forty-eight HRV features were valid and retained very strong correlations, negligible to small bias, with statistical equivalence in the ultra-short recordings (1 min 30 s). The current study concludes that the Bora Band provides valid and reliable measurement of HRV features in short and ultra-short duration recordings.

Details

Title
Validity of Ultra-Short-Term HRV Analysis Using PPG—A Preliminary Study
Author
Taoum, Aline 1 ; Bisiaux, Alexis 2 ; Tilquin, Florian 2 ; Yann Le Guillou 2 ; Carrault, Guy 1 

 Laboratoire Traitement du Signal et de l’Image (LTSI-Inserm UMR 1099), Université de Rennes 1, 35042 Rennes, France 
 Biosency, 35510 Cesson-Sévigné, France 
First page
7995
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728529432
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.