Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Aqueous zinc ion batteries (AZIBs) are an ideal choice for a new generation of large energy storage devices because of their high safety and low cost. Vanadium oxide-based materials have attracted great attention in the field of AZIB cathode materials due to their high theoretical capacity resulting from their rich oxidation states. However, the serious structural collapse and low intrinsic conductivity of vanadium oxide-based materials cause rapid capacity fading, which hinders their further applications in AZIB cathode materials. Here, the structural characteristics and energy storage mechanisms of vanadium oxide-based materials are reviewed, and the optimization strategies of vanadium oxide-based cathode materials are summarized, including substitutional doping, vacancy engineering, interlayer engineering, and structural composite. Finally, the future research and development direction of vanadium oxide-based AZIBs are prospected in terms of cathode, anode, electrolyte, non-electrode components, and recovery technology.

Details

Title
Vanadium Oxide-Based Cathode Materials for Aqueous Zinc-Ion Batteries: Energy Storage Mechanism and Design Strategy
Author
Qiu, Yu; Zhaoqian Yan; Sun, Zhihao; Guo, Zihao; Liu, Hongshou; Du, Benli; Tian, Shaoyao; Wang, Peng; Ding, Han; Qian, Lei
First page
118
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23046740
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791651201
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.