Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Aqueous zinc-ion batteries (AZIBs) are being intensively developed as potential alternative electrochemical power sources, due to their advantages such as low cost, high safety, abundance of natural zinc resources and appropriate energy density. Among currently investigated prospective cathode materials for AZIBs, vanadium oxide-based composites with intrinsically conducting polymers have shown many advantages, such as high capacity, high power density and long battery life. This review gives a focused view of the design for the boosting of zinc ion storage performance using intrinsically conducting polymers in vanadium oxide-based composites and the mechanism of intercalation processes. The main challenges in interfacial engineering of vanadium oxide-conducting polymers composite structures and the prospects for further development of such cathode materials are summarized and discussed. The review would give rise to a broad interest focusing on the advantageous strategy of the development of vanadium oxide composite cathodes with intrinsically conducting polymers (polyaniline, polypyrrole, poly(3,4-ethylenedioxythiophene)) for AZIBs with improved energy density, high-rate capability and stability.

Details

Title
Vanadium Oxide–Conducting Polymers Composite Cathodes for Aqueous Zinc-Ion Batteries: Interfacial Design and Enhancement of Electrochemical Performance
Author
Tolstopyatova, Elena G  VIAFID ORCID Logo  ; Kamenskii, Mikhail A  VIAFID ORCID Logo  ; Kondratiev, Veniamin V
First page
8966
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748532594
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.