Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The lowering of salt content in the field, especially in arid areas, after consecutive application of mulched drip irrigation (MDI) is of vital importance for sustainable cotton plantation. To elucidate the effects of long-term MDI on soil properties and cotton growth, this paper systematically monitored the soil salinity, ion concentrations and the yield of cotton in the field using MDI consecutively for six years in a typical oasis in Xinjiang, China. The results showed that MDI could significantly change salt distribution in the cotton field. During the six years tested, the soil salt content using MDI declined fast at first, and then the decline rate gradually decreased. In the 1st and 2nd year, the average salt content within 0–100 cm soil layer was larger than 20 g kg−1, which belonging to the saline soil. Then the salt content decreased to 10–20 g kg−1 in the 3rd and 4th year, and the cotton field declined to heavily saline soil. After 5 years of MDI, the soil turned to non-salinized. The Cl and SO42− equivalence ratio (CSER) also decreased with the increase of application years of MDI. Saline-alkaline land developed from chloride-sulphate solonchak (0.2 < CSER < 1) into sulphate solonchak (CSER < 0.2) after 6 years of MDI. The survival rate of the cotton increased from 1.48% (1 year of MDI) to 76.3% (6 years of MDI), and the yield increased from 72.43 kg ha−1 to 4515.48 kg ha−1. When the average CSER, SAR and the soil salinity in 0–140 cm soil layer decreased to 0.60, 0.98 (mol kg−1)0.5 and 6.25 g kg−1, farmers can achieve a balance between income and expenditure. Moreover, when CSER, SAR, and the soil salinity continuously decreased to 0.44, 0.69 (mol kg−1)0.5 and 0.77 g kg−1, the cotton yield will exceed the average production level of cotton in Xinjiang. Under the current irrigation schedule in the oasis irrigation area, the soil salinity and groundwater level after applying MDI could be conducive to cotton growth. However, this situation had also caused a waste of nearly 200 mm of water resources. Therefore, authors suggested that further research on water-saving irrigation systems suitable for different soil conditions should be carried out, and also the differential quota management in production practice should be adopted.

Details

Title
Variations of Soil Salinity and Cotton Growth under Six-Years Mulched Drip Irrigation
Author
Li, Wenhao 1 ; Wang, Zhenhua 2 ; Zhang, Jinzhu 2 ; Liu, Ningning 2 

 College of Water & Architectural Engineering, Shihezi University, Shihezi 832000, China; [email protected] (W.L.); [email protected] (J.Z.); [email protected] (N.L.); Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, China; College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China 
 College of Water & Architectural Engineering, Shihezi University, Shihezi 832000, China; [email protected] (W.L.); [email protected] (J.Z.); [email protected] (N.L.); Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, China 
First page
1127
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734395
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2544563068
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.