Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Many network protocols such as Controller Area Network (CAN) and Ethernet are used in the automotive industry to allow vehicle modules to communicate efficiently. These networks carry rich data from the different vehicle systems, such as the engine, transmission, brake, etc. This in-vehicle data can be used with machine learning algorithms to predict valuable information about the vehicle and roads. In this work, a low-cost machine learning system that uses in-vehicle data is proposed to solve three categorization problems; road surface conditions, road traffic conditions and driving style. Random forests, decision trees and support vector machine algorithms were evaluated to predict road conditions and driving style from labeled CAN data. These algorithms were used to classify road surface condition as smooth, even or full of holes. They were also used to classify road traffic conditions as low, normal or high, and the driving style was classified as normal or aggressive. Detection results were presented and analyzed. The random forests algorithm showed the highest detection accuracy results with an overall accuracy score between 92% and 95%.

Details

Title
In-Vehicle Data for Predicting Road Conditions and Driving Style Using Machine Learning
Author
Al-refai, Ghaith  VIAFID ORCID Logo  ; Elmoaqet, Hisham  VIAFID ORCID Logo  ; Ryalat, Mutaz  VIAFID ORCID Logo 
First page
8928
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716490436
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.