Abstract

Doc number: S9

Abstract

Background: RNA-related applications of the next-generation sequencing (NGS) technologies require context-specific interpretations: e.g., sequence mismatches may indicate sites of RNA editing, or uneven read coverage often points to mature form of microRNA. Existing visualization tools traditionally show RNA molecules in two dimensions, with their base pairing and the resulting secondary structure. However, it is not straightforward to combine a linear NGS data display with the 2-D RNA depictions.

Results: We present a novel approach for interactive representation of nucleotide substitutions and modifications in the transcribed genome. With the focus on RNA secondary structure in the context of NGS data, it provides intuitive visualization of genomic environment, sequence reads, nucleotide polymorphisms and editing events integrated with the structural and functional elements of both coding and non-coding RNA molecules. Using our approach we present and discuss examples and general trends of polymorphisms and editing in the context of the secondary structure of microRNAs. As expected, most of the substitutions comprised A to G and C to T events, consistent with typical RNA editing patterns. However, we did not observe prevalence of editing in double-stranded regions of the microRNA stem-loop. We describe novel prominent editing event candidates, observed across several small RNA libraries of Drosophila melanogaster .

Conclusions: In contrast to the existing general tools for NGS data visualization, the power of our approach is not only in the display of read alignments and their counts, but the integration of RNA secondary structure, sequencing depth, and rates/patterns of editing or other modifications. It provides a comprehensive picture, important for large-scale studies and detailed analyses, helping to gain insight into the intricate relationships between different events in RNA biogenesis.

Details

Title
Visualization of nucleotide substitutions in the (micro)transcriptome
Author
Naqvi, Ammar; Cui, Tiange; Grigoriev, Andrey
Publication year
2014
Publication date
2014
Publisher
BioMed Central
e-ISSN
14712164
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1526503277
Copyright
© 2014 Naqvi et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.