Full Text

Turn on search term navigation

© 2023. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background: Gestational diabetes mellitus (GDM) is the most common pregnant disorder worldwide. In this study, we aimed to explore whether vitamin E (VE) treatment alone could protect against GDM in a mouse model.

Methods: 6-week-old C57BL/6J female mice were fed on high-fat diet for two weeks and continued with high-fat diet after pregnancy to induce GDM. The pregnant mice were orally administrated with 2.5, 25 or 250 mg/kg VE twice per day during pregnancy together with high-fat diet. Oral glucose tolerance test, insulin amounts, oxidative stress and inflammation were then measured.

Results: Only 250 mg/kg VE could improve glucose tolerance and insulin level in pregnant mice. VE (250 mg/kg) effectively inhibited GDM-induced hyperlipidemia, and secretion of inflammatory cytokines such as tumor necrosis factor-α and interleukin-6. VE also significantly ameliorated maternal oxidative stress at the late stage of pregnancy, and also improved reproductive outcomes, including increasing the litter size and birth weight in GDM mice. Moreover, VE also activated GDM-reduced nuclear factor-erythroid factor 2-related factor 2 (Nrf2) / heme oxygenase-1 signaling pathway in the maternal liver tissues of GDM mice.

Conclusion: Our data clearly demonstrated that 250 mg/kg VE twice a day during pregnancy could significantly ameliorate the symptoms of GDM by alleviating oxidative stress, inflammation, hyperglycemia, and hyperlipidemia through Nrf2/HO-1 signaling pathway in GDM mice. Thus, additional VE supplement might be beneficial to GDM.

Details

Title
Vitamin E Supplement Protects Against Gestational Diabetes Mellitus in Mice Through nuclear factor-erythroid factor 2-related factor 2/heme oxygenase-1 Signaling Pathway
Author
Lin, Bozhu; Zhang, Xiaorong
Pages
565-574
Section
Original Research
Publication year
2023
Publication date
2023
Publisher
Taylor & Francis Ltd.
e-ISSN
1178-7007
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2787703111
Copyright
© 2023. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.