Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Tea polyphenol (TPs) oxidation caused by polyphenol oxidase (PPO) in manufacturing is responsible for the sensory characteristics and health function of fermented tea, therefore, this subject is rich in scientific and commercial interests. In this work, an in vitro catalysis of TPs in liquid nitrogen grinding of sun-dried green tea leaves by PPO was developed, and the changes in metabolites were analyzed by metabolomics. A total of 441 metabolites were identified in the catalyzed tea powder and control check samples, which were classified into 11 classes, including flavonoids (125 metabolites), phenolic acids (67 metabolites), and lipids (55 metabolites). The relative levels of 28 metabolites after catalysis were decreased significantly (variable importance in projection (VIP) > 1.0, p < 0.05, and fold change (FC) < 0.5)), while the relative levels of 45 metabolites, including theaflavin, theaflavin-3′-gallate, theaflavin-3-gallate, and theaflavin 3,3′-digallate were increased significantly (VIP > 1.0, p < 0.05, and FC > 2). The increase in theaflavins was associated with the polymerization of catechins catalyzed by PPO. This work provided an in vitro method for the study of the catalysis of enzymes in tea leaves.

Details

Title
An In Vitro Catalysis of Tea Polyphenols by Polyphenol Oxidase
Author
Liu, Kunyi 1   VIAFID ORCID Logo  ; Chen, Qiuyue 2 ; Luo, Hui 2 ; Li, Ruoyu 2 ; Chen, Lijiao 3 ; Jiang, Bin 1 ; Liang, Zhengwei 2 ; Wang, Teng 2 ; Ma, Yan 3 ; Zhao, Ming 2 

 College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province & National-Local Joint Engineering Research Center on Gemplasm Innovation & Uilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; College of Wuliangye Technology and Food Engineering & College of Modern Agriculture, Yibin Vocational and Technical College, Yibin 644003, China 
 College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province & National-Local Joint Engineering Research Center on Gemplasm Innovation & Uilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China 
 College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China 
First page
1722
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779642050
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.