Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

For wafer surface defect detection, a new method based on improved Faster RCNN is proposed here to solve the problems of missing detection due to small objects and multiple boxes detection due to discontinuous objects. First, focusing on the problem of small objects missing detection, a feature enhancement module (FEM) based on dynamic convolution is proposed to extract high-frequency image features, enrich the semantic information of shallow feature maps, and improve detection performance for small-scale defects. Second, for the multiple boxes detection caused by discontinuous objects, a predicted box aggregation method is proposed to aggregate redundant predicted boxes and fine-tune real predicted boxes to further improve positioning accuracy. Experimental results show that the mean average precision of the proposed method, when validated on a self-developed dataset, reached 87.5%, and the detection speed was 0.26 s per image. The proposed method has a certain engineering application value.

Details

Title
Wafer Surface Defect Detection Based on Feature Enhancement and Predicted Box Aggregation
Author
Zheng, Jiebing 1 ; Dang, Jiangtao 2 ; Zhang, Tao 3 

 School of Computer Science and Technology, Soochow University, Suzhou 215006, China; School of Computer Science and Engineering, Changshu Institute of Technology, Suzhou 215500, China 
 ENGITIST CORPORATION, Suzhou 215533, China 
 School of Computer Science and Engineering, Changshu Institute of Technology, Suzhou 215500, China 
First page
76
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761112707
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.