Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The cold metal transfer (CMT) process is widely used in thin plate welding because of its characteristics of low heat input and stable arc. In actual production, a larger weld gap, misalignment, or other problems due to assembly error lead to serious welding defects, such as burn-through and a lack of fusion. The arc sound contains a wealth of information related to the quality of the weld. This work analyzes the mechanism of CMT arc sound generation, as well as the correlation between the time–frequency spectrum of the arc sound signal and welding quality. This paper studies the extraction of the multi-channel time–frequency spectrum of an arc sound and inputs it to a custom convolutional neural network for the CMT welding defect identification of thin aluminum alloy plates. The experimental result shows that the average accuracy of the proposed model is 91.49% in the defect identification of a CMT arc-welded aluminum alloy sheet, which is higher than that of the single-channel time–frequency convolutional neural network and other traditional classification models.

Details

Title
Weld Defect Detection of a CMT Arc-Welded Aluminum Alloy Sheet Based on Arc Sound Signal Processing
Author
Yang, Guang 1 ; Guan, Kainan 1   VIAFID ORCID Logo  ; Zou, Li 1 ; Sun, Yibo 1 ; Yang, Xinhua 1 

 School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China; Liaoning Key Laboratory of Welding and Reliability of Rail Transportation Equipment, Dalian Jiaotong University, Dalian 116028, China 
First page
5152
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806474469
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.