Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the past few decades, video endoscopy has become one of the primary medical devices in diverse clinical fields for examination, treatment, and early disease diagnosis of the gastrointestinal tract. For an accurate diagnosis, an endoscopic camera offering bright and wide field-of-view images is required while maintaining its compact dimensions to enter the long, narrow, and dark tract inside of the body. Recent endoscopic lenses successfully provide wide fields-of-view and have compact sizes for the system; however, their f-numbers still remain at 2.8 or higher. Therefore, further improvement in f-numbers is required to compensate for the restricted illumination system of the endoscopic probe. Here, we present a low f-number endoscopic lens design while providing wide field-of-view and high-resolution imaging. The proposed lens system achieved a low f-number of 2.2 and a field-of-view of 140 deg. The modulation transfer function (MTF) is over 20% at 180 lp/mm, and relative illumination is more than 60% in the full field. Additionally, the proposed lens is designed for a 1/4” 5-megapixel complementary metal-oxide-semiconductor (CMOS) image sensor with a pixel size of 1.4 µm. This all-plastic lens design could help develop a high-performance disposable endoscope that prevents the risk of infection or cross-contamination with mass manufacture and low cost.

Details

Title
Wide Field-of-View, High-Resolution Endoscopic Lens Design with Low F-Number for Disposable Endoscopy
Author
Kim, Dongmok 1   VIAFID ORCID Logo  ; Chang, Sehui 2 ; Kwon, Hyuk-Sang 1 

 Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Korea; [email protected] 
 Gwangju Institute of Science and Technology, School of Electrical Engineering and Computer Science, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Korea; [email protected] 
First page
89
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
23046732
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2530145179
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.